/* Translated into C++ by SciPy developers in 2024. * Original header with Copyright information appears below. */ /* ellpk.c * * Complete elliptic integral of the first kind * * * * SYNOPSIS: * * double m1, y, ellpk(); * * y = ellpk( m1 ); * * * * DESCRIPTION: * * Approximates the integral * * * * pi/2 * - * | | * | dt * K(m) = | ------------------ * | 2 * | | sqrt( 1 - m sin t ) * - * 0 * * where m = 1 - m1, using the approximation * * P(x) - log x Q(x). * * The argument m1 is used internally rather than m so that the logarithmic * singularity at m = 1 will be shifted to the origin; this * preserves maximum accuracy. * * K(0) = pi/2. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0,1 30000 2.5e-16 6.8e-17 * * ERROR MESSAGES: * * message condition value returned * ellpk domain x<0, x>1 0.0 * */ /* ellpk.c */ /* * Cephes Math Library, Release 2.0: April, 1987 * Copyright 1984, 1987 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #pragma once #include "../config.h" #include "../error.h" #include "const.h" #include "polevl.h" namespace xsf { namespace cephes { namespace detail { constexpr double ellpk_P[] = {1.37982864606273237150E-4, 2.28025724005875567385E-3, 7.97404013220415179367E-3, 9.85821379021226008714E-3, 6.87489687449949877925E-3, 6.18901033637687613229E-3, 8.79078273952743772254E-3, 1.49380448916805252718E-2, 3.08851465246711995998E-2, 9.65735902811690126535E-2, 1.38629436111989062502E0}; constexpr double ellpk_Q[] = {2.94078955048598507511E-5, 9.14184723865917226571E-4, 5.94058303753167793257E-3, 1.54850516649762399335E-2, 2.39089602715924892727E-2, 3.01204715227604046988E-2, 3.73774314173823228969E-2, 4.88280347570998239232E-2, 7.03124996963957469739E-2, 1.24999999999870820058E-1, 4.99999999999999999821E-1}; constexpr double ellpk_C1 = 1.3862943611198906188E0; /* log(4) */ } // namespace detail XSF_HOST_DEVICE inline double ellpk(double x) { if (x < 0.0) { set_error("ellpk", SF_ERROR_DOMAIN, NULL); return (std::numeric_limits::quiet_NaN()); } if (x > 1.0) { if (std::isinf(x)) { return 0.0; } return ellpk(1 / x) / std::sqrt(x); } if (x > detail::MACHEP) { return (polevl(x, detail::ellpk_P, 10) - std::log(x) * polevl(x, detail::ellpk_Q, 10)); } else { if (x == 0.0) { set_error("ellpk", SF_ERROR_SINGULAR, NULL); return (std::numeric_limits::infinity()); } else { return (detail::ellpk_C1 - 0.5 * std::log(x)); } } } } // namespace cephes } // namespace xsf