from __future__ import annotations import functools import operator import os from collections.abc import Iterable from contextlib import suppress from typing import TYPE_CHECKING, Any import numpy as np from xarray import coding from xarray.backends.common import ( BACKEND_ENTRYPOINTS, BackendArray, BackendEntrypoint, WritableCFDataStore, _normalize_path, datatree_from_dict_with_io_cleanup, find_root_and_group, robust_getitem, ) from xarray.backends.file_manager import CachingFileManager, DummyFileManager from xarray.backends.locks import ( HDF5_LOCK, NETCDFC_LOCK, combine_locks, ensure_lock, get_write_lock, ) from xarray.backends.netcdf3 import encode_nc3_attr_value, encode_nc3_variable from xarray.backends.store import StoreBackendEntrypoint from xarray.coding.variables import pop_to from xarray.core import indexing from xarray.core.utils import ( FrozenDict, close_on_error, is_remote_uri, try_read_magic_number_from_path, ) from xarray.core.variable import Variable if TYPE_CHECKING: from h5netcdf.core import EnumType as h5EnumType from netCDF4 import EnumType as ncEnumType from xarray.backends.common import AbstractDataStore from xarray.core.dataset import Dataset from xarray.core.datatree import DataTree from xarray.core.types import ReadBuffer # This lookup table maps from dtype.byteorder to a readable endian # string used by netCDF4. _endian_lookup = {"=": "native", ">": "big", "<": "little", "|": "native"} NETCDF4_PYTHON_LOCK = combine_locks([NETCDFC_LOCK, HDF5_LOCK]) class BaseNetCDF4Array(BackendArray): __slots__ = ("datastore", "dtype", "shape", "variable_name") def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_array() self.shape = array.shape dtype = array.dtype if dtype is str: # use object dtype (with additional vlen string metadata) because that's # the only way in numpy to represent variable length strings and to # check vlen string dtype in further steps # it also prevents automatic string concatenation via # conventions.decode_cf_variable dtype = coding.strings.create_vlen_dtype(str) self.dtype = dtype def __setitem__(self, key, value): with self.datastore.lock: data = self.get_array(needs_lock=False) data[key] = value if self.datastore.autoclose: self.datastore.close(needs_lock=False) def get_array(self, needs_lock=True): raise NotImplementedError("Virtual Method") class NetCDF4ArrayWrapper(BaseNetCDF4Array): __slots__ = () def get_array(self, needs_lock=True): ds = self.datastore._acquire(needs_lock) variable = ds.variables[self.variable_name] variable.set_auto_maskandscale(False) # only added in netCDF4-python v1.2.8 with suppress(AttributeError): variable.set_auto_chartostring(False) return variable def __getitem__(self, key): return indexing.explicit_indexing_adapter( key, self.shape, indexing.IndexingSupport.OUTER, self._getitem ) def _getitem(self, key): if self.datastore.is_remote: # pragma: no cover getitem = functools.partial(robust_getitem, catch=RuntimeError) else: getitem = operator.getitem try: with self.datastore.lock: original_array = self.get_array(needs_lock=False) array = getitem(original_array, key) except IndexError as err: # Catch IndexError in netCDF4 and return a more informative # error message. This is most often called when an unsorted # indexer is used before the data is loaded from disk. msg = ( "The indexing operation you are attempting to perform " "is not valid on netCDF4.Variable object. Try loading " "your data into memory first by calling .load()." ) raise IndexError(msg) from err return array def _encode_nc4_variable(var): for coder in [ coding.strings.EncodedStringCoder(allows_unicode=True), coding.strings.CharacterArrayCoder(), ]: var = coder.encode(var) return var def _check_encoding_dtype_is_vlen_string(dtype): if dtype is not str: raise AssertionError( # pragma: no cover f"unexpected dtype encoding {dtype!r}. This shouldn't happen: please " "file a bug report at github.com/pydata/xarray" ) def _get_datatype( var, nc_format="NETCDF4", raise_on_invalid_encoding=False ) -> np.dtype: if nc_format == "NETCDF4": return _nc4_dtype(var) if "dtype" in var.encoding: encoded_dtype = var.encoding["dtype"] _check_encoding_dtype_is_vlen_string(encoded_dtype) if raise_on_invalid_encoding: raise ValueError( "encoding dtype=str for vlen strings is only supported " "with format='NETCDF4'." ) return var.dtype def _nc4_dtype(var): if "dtype" in var.encoding: dtype = var.encoding.pop("dtype") _check_encoding_dtype_is_vlen_string(dtype) elif coding.strings.is_unicode_dtype(var.dtype): dtype = str elif var.dtype.kind in ["i", "u", "f", "c", "S"]: dtype = var.dtype else: raise ValueError(f"unsupported dtype for netCDF4 variable: {var.dtype}") return dtype def _netcdf4_create_group(dataset, name): return dataset.createGroup(name) def _nc4_require_group(ds, group, mode, create_group=_netcdf4_create_group): if group in {None, "", "/"}: # use the root group return ds else: # make sure it's a string if not isinstance(group, str): raise ValueError("group must be a string or None") # support path-like syntax path = group.strip("/").split("/") for key in path: try: ds = ds.groups[key] except KeyError as e: if mode != "r": ds = create_group(ds, key) else: # wrap error to provide slightly more helpful message raise OSError(f"group not found: {key}", e) from e return ds def _ensure_no_forward_slash_in_name(name): if "/" in name: raise ValueError( f"Forward slashes '/' are not allowed in variable and dimension names (got {name!r}). " "Forward slashes are used as hierarchy-separators for " "HDF5-based files ('netcdf4'/'h5netcdf')." ) def _ensure_fill_value_valid(data, attributes): # work around for netCDF4/scipy issue where _FillValue has the wrong type: # https://github.com/Unidata/netcdf4-python/issues/271 if data.dtype.kind == "S" and "_FillValue" in attributes: attributes["_FillValue"] = np.bytes_(attributes["_FillValue"]) def _force_native_endianness(var): # possible values for byteorder are: # = native # < little-endian # > big-endian # | not applicable # Below we check if the data type is not native or NA if var.dtype.byteorder not in ["=", "|"]: # if endianness is specified explicitly, convert to the native type data = var.data.astype(var.dtype.newbyteorder("=")) var = Variable(var.dims, data, var.attrs, var.encoding) # if endian exists, remove it from the encoding. var.encoding.pop("endian", None) # check to see if encoding has a value for endian its 'native' if var.encoding.get("endian", "native") != "native": raise NotImplementedError( "Attempt to write non-native endian type, " "this is not supported by the netCDF4 " "python library." ) return var def _extract_nc4_variable_encoding( variable: Variable, raise_on_invalid=False, lsd_okay=True, h5py_okay=False, backend="netCDF4", unlimited_dims=None, ) -> dict[str, Any]: if unlimited_dims is None: unlimited_dims = () encoding = variable.encoding.copy() safe_to_drop = {"source", "original_shape"} valid_encodings = { "zlib", "complevel", "fletcher32", "contiguous", "chunksizes", "shuffle", "_FillValue", "dtype", "compression", "significant_digits", "quantize_mode", "blosc_shuffle", "szip_coding", "szip_pixels_per_block", "endian", } if lsd_okay: valid_encodings.add("least_significant_digit") if h5py_okay: valid_encodings.add("compression_opts") if not raise_on_invalid and encoding.get("chunksizes") is not None: # It's possible to get encoded chunksizes larger than a dimension size # if the original file had an unlimited dimension. This is problematic # if the new file no longer has an unlimited dimension. chunksizes = encoding["chunksizes"] chunks_too_big = any( c > d and dim not in unlimited_dims for c, d, dim in zip( chunksizes, variable.shape, variable.dims, strict=False ) ) has_original_shape = "original_shape" in encoding changed_shape = ( has_original_shape and encoding.get("original_shape") != variable.shape ) if chunks_too_big or changed_shape: del encoding["chunksizes"] var_has_unlim_dim = any(dim in unlimited_dims for dim in variable.dims) if not raise_on_invalid and var_has_unlim_dim and "contiguous" in encoding.keys(): del encoding["contiguous"] for k in safe_to_drop: if k in encoding: del encoding[k] if raise_on_invalid: invalid = [k for k in encoding if k not in valid_encodings] if invalid: raise ValueError( f"unexpected encoding parameters for {backend!r} backend: {invalid!r}. Valid " f"encodings are: {valid_encodings!r}" ) else: for k in list(encoding): if k not in valid_encodings: del encoding[k] return encoding def _is_list_of_strings(value) -> bool: arr = np.asarray(value) return arr.dtype.kind in ["U", "S"] and arr.size > 1 def _build_and_get_enum( store, var_name: str, dtype: np.dtype, enum_name: str, enum_dict: dict[str, int] ) -> ncEnumType | h5EnumType: """ Add or get the netCDF4 Enum based on the dtype in encoding. The return type should be ``netCDF4.EnumType``, but we avoid importing netCDF4 globally for performances. """ if enum_name not in store.ds.enumtypes: create_func = ( store.ds.createEnumType if isinstance(store, NetCDF4DataStore) else store.ds.create_enumtype ) return create_func( dtype, enum_name, enum_dict, ) datatype = store.ds.enumtypes[enum_name] if datatype.enum_dict != enum_dict: error_msg = ( f"Cannot save variable `{var_name}` because an enum" f" `{enum_name}` already exists in the Dataset but has" " a different definition. To fix this error, make sure" " all variables have a uniquely named enum in their" " `encoding['dtype'].metadata` or, if they should share" " the same enum type, make sure the enums are identical." ) raise ValueError(error_msg) return datatype class NetCDF4DataStore(WritableCFDataStore): """Store for reading and writing data via the Python-NetCDF4 library. This store supports NetCDF3, NetCDF4 and OpenDAP datasets. """ __slots__ = ( "_filename", "_group", "_manager", "_mode", "autoclose", "format", "is_remote", "lock", ) def __init__( self, manager, group=None, mode=None, lock=NETCDF4_PYTHON_LOCK, autoclose=False ): import netCDF4 if isinstance(manager, netCDF4.Dataset): if group is None: root, group = find_root_and_group(manager) else: if type(manager) is not netCDF4.Dataset: raise ValueError( "must supply a root netCDF4.Dataset if the group " "argument is provided" ) root = manager manager = DummyFileManager(root) self._manager = manager self._group = group self._mode = mode self.format = self.ds.data_model self._filename = self.ds.filepath() self.is_remote = is_remote_uri(self._filename) self.lock = ensure_lock(lock) self.autoclose = autoclose @classmethod def open( cls, filename, mode="r", format="NETCDF4", group=None, clobber=True, diskless=False, persist=False, auto_complex=None, lock=None, lock_maker=None, autoclose=False, ): import netCDF4 if isinstance(filename, os.PathLike): filename = os.fspath(filename) if not isinstance(filename, str): raise ValueError( "can only read bytes or file-like objects " "with engine='scipy' or 'h5netcdf'" ) if format is None: format = "NETCDF4" if lock is None: if mode == "r": if is_remote_uri(filename): lock = NETCDFC_LOCK else: lock = NETCDF4_PYTHON_LOCK else: if format is None or format.startswith("NETCDF4"): base_lock = NETCDF4_PYTHON_LOCK else: base_lock = NETCDFC_LOCK lock = combine_locks([base_lock, get_write_lock(filename)]) kwargs = dict( clobber=clobber, diskless=diskless, persist=persist, format=format, ) if auto_complex is not None: kwargs["auto_complex"] = auto_complex manager = CachingFileManager( netCDF4.Dataset, filename, mode=mode, kwargs=kwargs ) return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose) def _acquire(self, needs_lock=True): with self._manager.acquire_context(needs_lock) as root: ds = _nc4_require_group(root, self._group, self._mode) return ds @property def ds(self): return self._acquire() def open_store_variable(self, name: str, var): import netCDF4 dimensions = var.dimensions attributes = {k: var.getncattr(k) for k in var.ncattrs()} data = indexing.LazilyIndexedArray(NetCDF4ArrayWrapper(name, self)) encoding: dict[str, Any] = {} if isinstance(var.datatype, netCDF4.EnumType): encoding["dtype"] = np.dtype( data.dtype, metadata={ "enum": var.datatype.enum_dict, "enum_name": var.datatype.name, }, ) else: encoding["dtype"] = var.dtype _ensure_fill_value_valid(data, attributes) # netCDF4 specific encoding; save _FillValue for later filters = var.filters() if filters is not None: encoding.update(filters) chunking = var.chunking() if chunking is not None: if chunking == "contiguous": encoding["contiguous"] = True encoding["chunksizes"] = None else: encoding["contiguous"] = False encoding["chunksizes"] = tuple(chunking) encoding["preferred_chunks"] = dict( zip(var.dimensions, chunking, strict=True) ) # TODO: figure out how to round-trip "endian-ness" without raising # warnings from netCDF4 # encoding['endian'] = var.endian() pop_to(attributes, encoding, "least_significant_digit") # save source so __repr__ can detect if it's local or not encoding["source"] = self._filename encoding["original_shape"] = data.shape return Variable(dimensions, data, attributes, encoding) def get_variables(self): return FrozenDict( (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items() ) def get_attrs(self): return FrozenDict((k, self.ds.getncattr(k)) for k in self.ds.ncattrs()) def get_dimensions(self): return FrozenDict((k, len(v)) for k, v in self.ds.dimensions.items()) def get_encoding(self): return { "unlimited_dims": { k for k, v in self.ds.dimensions.items() if v.isunlimited() } } def set_dimension(self, name, length, is_unlimited=False): _ensure_no_forward_slash_in_name(name) dim_length = length if not is_unlimited else None self.ds.createDimension(name, size=dim_length) def set_attribute(self, key, value): if self.format != "NETCDF4": value = encode_nc3_attr_value(value) if _is_list_of_strings(value): # encode as NC_STRING if attr is list of strings self.ds.setncattr_string(key, value) else: self.ds.setncattr(key, value) def encode_variable(self, variable): variable = _force_native_endianness(variable) if self.format == "NETCDF4": variable = _encode_nc4_variable(variable) else: variable = encode_nc3_variable(variable) return variable def prepare_variable( self, name, variable: Variable, check_encoding=False, unlimited_dims=None ): _ensure_no_forward_slash_in_name(name) attrs = variable.attrs.copy() fill_value = attrs.pop("_FillValue", None) datatype: np.dtype | ncEnumType | h5EnumType datatype = _get_datatype( variable, self.format, raise_on_invalid_encoding=check_encoding ) # check enum metadata and use netCDF4.EnumType if ( (meta := np.dtype(datatype).metadata) and (e_name := meta.get("enum_name")) and (e_dict := meta.get("enum")) ): datatype = _build_and_get_enum(self, name, datatype, e_name, e_dict) encoding = _extract_nc4_variable_encoding( variable, raise_on_invalid=check_encoding, unlimited_dims=unlimited_dims ) if name in self.ds.variables: nc4_var = self.ds.variables[name] else: default_args = dict( varname=name, datatype=datatype, dimensions=variable.dims, zlib=False, complevel=4, shuffle=True, fletcher32=False, contiguous=False, chunksizes=None, endian="native", least_significant_digit=None, fill_value=fill_value, ) default_args.update(encoding) default_args.pop("_FillValue", None) nc4_var = self.ds.createVariable(**default_args) nc4_var.setncatts(attrs) target = NetCDF4ArrayWrapper(name, self) return target, variable.data def sync(self): self.ds.sync() def close(self, **kwargs): self._manager.close(**kwargs) class NetCDF4BackendEntrypoint(BackendEntrypoint): """ Backend for netCDF files based on the netCDF4 package. It can open ".nc", ".nc4", ".cdf" files and will be chosen as default for these files. Additionally it can open valid HDF5 files, see https://h5netcdf.org/#invalid-netcdf-files for more info. It will not be detected as valid backend for such files, so make sure to specify ``engine="netcdf4"`` in ``open_dataset``. For more information about the underlying library, visit: https://unidata.github.io/netcdf4-python See Also -------- backends.NetCDF4DataStore backends.H5netcdfBackendEntrypoint backends.ScipyBackendEntrypoint """ description = ( "Open netCDF (.nc, .nc4 and .cdf) and most HDF5 files using netCDF4 in Xarray" ) url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.NetCDF4BackendEntrypoint.html" def guess_can_open( self, filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore, ) -> bool: if isinstance(filename_or_obj, str) and is_remote_uri(filename_or_obj): return True magic_number = try_read_magic_number_from_path(filename_or_obj) if magic_number is not None: # netcdf 3 or HDF5 return magic_number.startswith((b"CDF", b"\211HDF\r\n\032\n")) if isinstance(filename_or_obj, str | os.PathLike): _, ext = os.path.splitext(filename_or_obj) return ext in {".nc", ".nc4", ".cdf"} return False def open_dataset( self, filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore, *, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables: str | Iterable[str] | None = None, use_cftime=None, decode_timedelta=None, group=None, mode="r", format="NETCDF4", clobber=True, diskless=False, persist=False, auto_complex=None, lock=None, autoclose=False, ) -> Dataset: filename_or_obj = _normalize_path(filename_or_obj) store = NetCDF4DataStore.open( filename_or_obj, mode=mode, format=format, group=group, clobber=clobber, diskless=diskless, persist=persist, auto_complex=auto_complex, lock=lock, autoclose=autoclose, ) store_entrypoint = StoreBackendEntrypoint() with close_on_error(store): ds = store_entrypoint.open_dataset( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables, use_cftime=use_cftime, decode_timedelta=decode_timedelta, ) return ds def open_datatree( self, filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore, *, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables: str | Iterable[str] | None = None, use_cftime=None, decode_timedelta=None, group: str | None = None, format="NETCDF4", clobber=True, diskless=False, persist=False, auto_complex=None, lock=None, autoclose=False, **kwargs, ) -> DataTree: groups_dict = self.open_groups_as_dict( filename_or_obj, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables, use_cftime=use_cftime, decode_timedelta=decode_timedelta, group=group, format=format, clobber=clobber, diskless=diskless, persist=persist, lock=lock, autoclose=autoclose, **kwargs, ) return datatree_from_dict_with_io_cleanup(groups_dict) def open_groups_as_dict( self, filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore, *, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables: str | Iterable[str] | None = None, use_cftime=None, decode_timedelta=None, group: str | None = None, format="NETCDF4", clobber=True, diskless=False, persist=False, auto_complex=None, lock=None, autoclose=False, **kwargs, ) -> dict[str, Dataset]: from xarray.backends.common import _iter_nc_groups from xarray.core.treenode import NodePath filename_or_obj = _normalize_path(filename_or_obj) store = NetCDF4DataStore.open( filename_or_obj, group=group, format=format, clobber=clobber, diskless=diskless, persist=persist, lock=lock, autoclose=autoclose, ) # Check for a group and make it a parent if it exists if group: parent = NodePath("/") / NodePath(group) else: parent = NodePath("/") manager = store._manager groups_dict = {} for path_group in _iter_nc_groups(store.ds, parent=parent): group_store = NetCDF4DataStore(manager, group=path_group, **kwargs) store_entrypoint = StoreBackendEntrypoint() with close_on_error(group_store): group_ds = store_entrypoint.open_dataset( group_store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables, use_cftime=use_cftime, decode_timedelta=decode_timedelta, ) if group: group_name = str(NodePath(path_group).relative_to(parent)) else: group_name = str(NodePath(path_group)) groups_dict[group_name] = group_ds return groups_dict BACKEND_ENTRYPOINTS["netcdf4"] = ("netCDF4", NetCDF4BackendEntrypoint)