from __future__ import annotations import functools import warnings from collections.abc import Callable, Hashable, Iterable, MutableMapping from typing import TYPE_CHECKING, Any, Literal, Union, cast, overload import numpy as np import pandas as pd from xarray.core.alignment import broadcast from xarray.core.concat import concat from xarray.core.utils import attempt_import from xarray.plot.facetgrid import _easy_facetgrid from xarray.plot.utils import ( _LINEWIDTH_RANGE, _MARKERSIZE_RANGE, _add_colorbar, _add_legend, _assert_valid_xy, _determine_guide, _ensure_plottable, _guess_coords_to_plot, _infer_interval_breaks, _infer_xy_labels, _Normalize, _process_cmap_cbar_kwargs, _rescale_imshow_rgb, _resolve_intervals_1dplot, _resolve_intervals_2dplot, _set_concise_date, _update_axes, get_axis, label_from_attrs, ) if TYPE_CHECKING: from matplotlib.axes import Axes from matplotlib.collections import PathCollection, QuadMesh from matplotlib.colors import Colormap, Normalize from matplotlib.container import BarContainer from matplotlib.contour import QuadContourSet from matplotlib.image import AxesImage from matplotlib.patches import Polygon from mpl_toolkits.mplot3d.art3d import Line3D, Poly3DCollection from numpy.typing import ArrayLike from xarray.core.dataarray import DataArray from xarray.core.types import ( AspectOptions, ExtendOptions, HueStyleOptions, ScaleOptions, T_DataArray, ) from xarray.plot.facetgrid import FacetGrid _styles: dict[str, Any] = { # Add a white border to make it easier seeing overlapping markers: "scatter.edgecolors": "w", } def _infer_line_data( darray: DataArray, x: Hashable | None, y: Hashable | None, hue: Hashable | None ) -> tuple[DataArray, DataArray, DataArray | None, str]: ndims = len(darray.dims) if x is not None and y is not None: raise ValueError("Cannot specify both x and y kwargs for line plots.") if x is not None: _assert_valid_xy(darray, x, "x") if y is not None: _assert_valid_xy(darray, y, "y") if ndims == 1: huename = None hueplt = None huelabel = "" if x is not None: xplt = darray[x] yplt = darray elif y is not None: xplt = darray yplt = darray[y] else: # Both x & y are None dim = darray.dims[0] xplt = darray[dim] yplt = darray else: if x is None and y is None and hue is None: raise ValueError("For 2D inputs, please specify either hue, x or y.") if y is None: if hue is not None: _assert_valid_xy(darray, hue, "hue") xname, huename = _infer_xy_labels(darray=darray, x=x, y=hue) xplt = darray[xname] if xplt.ndim > 1: if huename in darray.dims: otherindex = 1 if darray.dims.index(huename) == 0 else 0 otherdim = darray.dims[otherindex] yplt = darray.transpose(otherdim, huename, transpose_coords=False) xplt = xplt.transpose(otherdim, huename, transpose_coords=False) else: raise ValueError( "For 2D inputs, hue must be a dimension" " i.e. one of " + repr(darray.dims) ) else: (xdim,) = darray[xname].dims (huedim,) = darray[huename].dims yplt = darray.transpose(xdim, huedim) else: yname, huename = _infer_xy_labels(darray=darray, x=y, y=hue) yplt = darray[yname] if yplt.ndim > 1: if huename in darray.dims: otherindex = 1 if darray.dims.index(huename) == 0 else 0 otherdim = darray.dims[otherindex] xplt = darray.transpose(otherdim, huename, transpose_coords=False) yplt = yplt.transpose(otherdim, huename, transpose_coords=False) else: raise ValueError( "For 2D inputs, hue must be a dimension" " i.e. one of " + repr(darray.dims) ) else: (ydim,) = darray[yname].dims (huedim,) = darray[huename].dims xplt = darray.transpose(ydim, huedim) huelabel = label_from_attrs(darray[huename]) hueplt = darray[huename] return xplt, yplt, hueplt, huelabel def _prepare_plot1d_data( darray: T_DataArray, coords_to_plot: MutableMapping[str, Hashable], plotfunc_name: str | None = None, _is_facetgrid: bool = False, ) -> dict[str, T_DataArray]: """ Prepare data for usage with plt.scatter. Parameters ---------- darray : T_DataArray Base DataArray. coords_to_plot : MutableMapping[str, Hashable] Coords that will be plotted. plotfunc_name : str | None Name of the plotting function that will be used. Returns ------- plts : dict[str, T_DataArray] Dict of DataArrays that will be sent to matplotlib. Examples -------- >>> # Make sure int coords are plotted: >>> a = xr.DataArray( ... data=[1, 2], ... coords={1: ("x", [0, 1], {"units": "s"})}, ... dims=("x",), ... name="a", ... ) >>> plts = xr.plot.dataarray_plot._prepare_plot1d_data( ... a, coords_to_plot={"x": 1, "z": None, "hue": None, "size": None} ... ) >>> # Check which coords to plot: >>> print({k: v.name for k, v in plts.items()}) {'y': 'a', 'x': 1} """ # If there are more than 1 dimension in the array than stack all the # dimensions so the plotter can plot anything: if darray.ndim > 1: # When stacking dims the lines will continue connecting. For floats # this can be solved by adding a nan element in between the flattening # points: dims_T = [] if np.issubdtype(darray.dtype, np.floating): for v in ["z", "x"]: dim = coords_to_plot.get(v, None) if (dim is not None) and (dim in darray.dims): darray_nan = np.nan * darray.isel({dim: -1}) darray = concat([darray, darray_nan], dim=dim) dims_T.append(coords_to_plot[v]) # Lines should never connect to the same coordinate when stacked, # transpose to avoid this as much as possible: darray = darray.transpose(..., *dims_T) # Array is now ready to be stacked: darray = darray.stack(_stacked_dim=darray.dims) # Broadcast together all the chosen variables: plts = dict(y=darray) plts.update( {k: darray.coords[v] for k, v in coords_to_plot.items() if v is not None} ) plts = dict(zip(plts.keys(), broadcast(*(plts.values())), strict=True)) return plts # return type is Any due to the many different possibilities def plot( darray: DataArray, *, row: Hashable | None = None, col: Hashable | None = None, col_wrap: int | None = None, ax: Axes | None = None, hue: Hashable | None = None, subplot_kws: dict[str, Any] | None = None, **kwargs: Any, ) -> Any: """ Default plot of DataArray using :py:mod:`matplotlib:matplotlib.pyplot`. Calls xarray plotting function based on the dimensions of the squeezed DataArray. =============== =========================== Dimensions Plotting function =============== =========================== 1 :py:func:`xarray.plot.line` 2 :py:func:`xarray.plot.pcolormesh` Anything else :py:func:`xarray.plot.hist` =============== =========================== Parameters ---------- darray : DataArray row : Hashable or None, optional If passed, make row faceted plots on this dimension name. col : Hashable or None, optional If passed, make column faceted plots on this dimension name. col_wrap : int or None, optional Use together with ``col`` to wrap faceted plots. ax : matplotlib axes object, optional Axes on which to plot. By default, use the current axes. Mutually exclusive with ``size``, ``figsize`` and facets. hue : Hashable or None, optional If passed, make faceted line plots with hue on this dimension name. subplot_kws : dict, optional Dictionary of keyword arguments for Matplotlib subplots (see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`). **kwargs : optional Additional keyword arguments for Matplotlib. See Also -------- xarray.DataArray.squeeze """ darray = darray.squeeze( d for d, s in darray.sizes.items() if s == 1 and d not in (row, col, hue) ).compute() plot_dims = set(darray.dims) plot_dims.discard(row) plot_dims.discard(col) plot_dims.discard(hue) ndims = len(plot_dims) plotfunc: Callable if ndims == 0 or darray.size == 0: raise TypeError("No numeric data to plot.") if ndims in (1, 2): if row or col: kwargs["subplot_kws"] = subplot_kws kwargs["row"] = row kwargs["col"] = col kwargs["col_wrap"] = col_wrap if ndims == 1: plotfunc = line kwargs["hue"] = hue elif ndims == 2: if hue: plotfunc = line kwargs["hue"] = hue else: plotfunc = pcolormesh kwargs["subplot_kws"] = subplot_kws else: if row or col or hue: raise ValueError( "Only 1d and 2d plots are supported for facets in xarray. " "See the package `Seaborn` for more options." ) plotfunc = hist kwargs["ax"] = ax return plotfunc(darray, **kwargs) @overload def line( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, *args: Any, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive figsize: Iterable[float] | None = None, aspect: AspectOptions = None, size: float | None = None, ax: Axes | None = None, hue: Hashable | None = None, x: Hashable | None = None, y: Hashable | None = None, xincrease: bool | None = None, yincrease: bool | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, add_legend: bool = True, _labels: bool = True, **kwargs: Any, ) -> list[Line3D]: ... @overload def line( darray: T_DataArray, *args: Any, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, figsize: Iterable[float] | None = None, aspect: AspectOptions = None, size: float | None = None, ax: Axes | None = None, hue: Hashable | None = None, x: Hashable | None = None, y: Hashable | None = None, xincrease: bool | None = None, yincrease: bool | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, add_legend: bool = True, _labels: bool = True, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @overload def line( darray: T_DataArray, *args: Any, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid figsize: Iterable[float] | None = None, aspect: AspectOptions = None, size: float | None = None, ax: Axes | None = None, hue: Hashable | None = None, x: Hashable | None = None, y: Hashable | None = None, xincrease: bool | None = None, yincrease: bool | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, add_legend: bool = True, _labels: bool = True, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... # This function signature should not change so that it can use # matplotlib format strings def line( darray: T_DataArray, *args: Any, row: Hashable | None = None, col: Hashable | None = None, figsize: Iterable[float] | None = None, aspect: AspectOptions = None, size: float | None = None, ax: Axes | None = None, hue: Hashable | None = None, x: Hashable | None = None, y: Hashable | None = None, xincrease: bool | None = None, yincrease: bool | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, add_legend: bool = True, _labels: bool = True, **kwargs: Any, ) -> list[Line3D] | FacetGrid[T_DataArray]: """ Line plot of DataArray values. Wraps :py:func:`matplotlib:matplotlib.pyplot.plot`. Parameters ---------- darray : DataArray Either 1D or 2D. If 2D, one of ``hue``, ``x`` or ``y`` must be provided. row : Hashable, optional If passed, make row faceted plots on this dimension name. col : Hashable, optional If passed, make column faceted plots on this dimension name. figsize : tuple, optional A tuple (width, height) of the figure in inches. Mutually exclusive with ``size`` and ``ax``. aspect : "auto", "equal", scalar or None, optional Aspect ratio of plot, so that ``aspect * size`` gives the *width* in inches. Only used if a ``size`` is provided. size : scalar, optional If provided, create a new figure for the plot with the given size: *height* (in inches) of each plot. See also: ``aspect``. ax : matplotlib axes object, optional Axes on which to plot. By default, the current is used. Mutually exclusive with ``size`` and ``figsize``. hue : Hashable, optional Dimension or coordinate for which you want multiple lines plotted. If plotting against a 2D coordinate, ``hue`` must be a dimension. x, y : Hashable, optional Dimension, coordinate or multi-index level for *x*, *y* axis. Only one of these may be specified. The other will be used for values from the DataArray on which this plot method is called. xincrease : bool or None, optional Should the values on the *x* axis be increasing from left to right? if ``None``, use the default for the Matplotlib function. yincrease : bool or None, optional Should the values on the *y* axis be increasing from top to bottom? if ``None``, use the default for the Matplotlib function. xscale, yscale : {'linear', 'symlog', 'log', 'logit'}, optional Specifies scaling for the *x*- and *y*-axis, respectively. xticks, yticks : array-like, optional Specify tick locations for *x*- and *y*-axis. xlim, ylim : tuple[float, float], optional Specify *x*- and *y*-axis limits. add_legend : bool, default: True Add legend with *y* axis coordinates (2D inputs only). *args, **kwargs : optional Additional arguments to :py:func:`matplotlib:matplotlib.pyplot.plot`. Returns ------- primitive : list of Line3D or FacetGrid When either col or row is given, returns a FacetGrid, otherwise a list of matplotlib Line3D objects. """ # Handle facetgrids first if row or col: allargs = locals().copy() allargs.update(allargs.pop("kwargs")) allargs.pop("darray") return _easy_facetgrid(darray, line, kind="line", **allargs) ndims = len(darray.dims) if ndims == 0 or darray.size == 0: # TypeError to be consistent with pandas raise TypeError("No numeric data to plot.") if ndims > 2: raise ValueError( "Line plots are for 1- or 2-dimensional DataArrays. " f"Passed DataArray has {ndims} " "dimensions" ) # The allargs dict passed to _easy_facetgrid above contains args if args == (): args = kwargs.pop("args", ()) else: assert "args" not in kwargs ax = get_axis(figsize, size, aspect, ax) xplt, yplt, hueplt, hue_label = _infer_line_data(darray, x, y, hue) # Remove pd.Intervals if contained in xplt.values and/or yplt.values. xplt_val, yplt_val, x_suffix, y_suffix, kwargs = _resolve_intervals_1dplot( xplt.to_numpy(), yplt.to_numpy(), kwargs ) xlabel = label_from_attrs(xplt, extra=x_suffix) ylabel = label_from_attrs(yplt, extra=y_suffix) _ensure_plottable(xplt_val, yplt_val) primitive = ax.plot(xplt_val, yplt_val, *args, **kwargs) if _labels: if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) ax.set_title(darray._title_for_slice()) if darray.ndim == 2 and add_legend: assert hueplt is not None ax.legend(handles=primitive, labels=list(hueplt.to_numpy()), title=hue_label) if np.issubdtype(xplt.dtype, np.datetime64): _set_concise_date(ax, axis="x") _update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim) return primitive @overload def step( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, *args: Any, where: Literal["pre", "post", "mid"] = "pre", drawstyle: str | None = None, ds: str | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive **kwargs: Any, ) -> list[Line3D]: ... @overload def step( darray: DataArray, *args: Any, where: Literal["pre", "post", "mid"] = "pre", drawstyle: str | None = None, ds: str | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, **kwargs: Any, ) -> FacetGrid[DataArray]: ... @overload def step( darray: DataArray, *args: Any, where: Literal["pre", "post", "mid"] = "pre", drawstyle: str | None = None, ds: str | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid **kwargs: Any, ) -> FacetGrid[DataArray]: ... def step( darray: DataArray, *args: Any, where: Literal["pre", "post", "mid"] = "pre", drawstyle: str | None = None, ds: str | None = None, row: Hashable | None = None, col: Hashable | None = None, **kwargs: Any, ) -> list[Line3D] | FacetGrid[DataArray]: """ Step plot of DataArray values. Similar to :py:func:`matplotlib:matplotlib.pyplot.step`. Parameters ---------- where : {'pre', 'post', 'mid'}, default: 'pre' Define where the steps should be placed: - ``'pre'``: The y value is continued constantly to the left from every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the value ``y[i]``. - ``'post'``: The y value is continued constantly to the right from every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the value ``y[i]``. - ``'mid'``: Steps occur half-way between the *x* positions. Note that this parameter is ignored if one coordinate consists of :py:class:`pandas.Interval` values, e.g. as a result of :py:func:`xarray.Dataset.groupby_bins`. In this case, the actual boundaries of the interval are used. drawstyle, ds : str or None, optional Additional drawstyle. Only use one of drawstyle and ds. row : Hashable, optional If passed, make row faceted plots on this dimension name. col : Hashable, optional If passed, make column faceted plots on this dimension name. *args, **kwargs : optional Additional arguments for :py:func:`xarray.plot.line`. Returns ------- primitive : list of Line3D or FacetGrid When either col or row is given, returns a FacetGrid, otherwise a list of matplotlib Line3D objects. """ if where not in {"pre", "post", "mid"}: raise ValueError("'where' argument to step must be 'pre', 'post' or 'mid'") if ds is not None: if drawstyle is None: drawstyle = ds else: raise TypeError("ds and drawstyle are mutually exclusive") if drawstyle is None: drawstyle = "" drawstyle = "steps-" + where + drawstyle return line(darray, *args, drawstyle=drawstyle, col=col, row=row, **kwargs) def hist( darray: DataArray, *args: Any, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, xincrease: bool | None = None, yincrease: bool | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, **kwargs: Any, ) -> tuple[np.ndarray, np.ndarray, BarContainer | Polygon]: """ Histogram of DataArray. Wraps :py:func:`matplotlib:matplotlib.pyplot.hist`. Plots *N*-dimensional arrays by first flattening the array. Parameters ---------- darray : DataArray Can have any number of dimensions. figsize : Iterable of float, optional A tuple (width, height) of the figure in inches. Mutually exclusive with ``size`` and ``ax``. aspect : "auto", "equal", scalar or None, optional Aspect ratio of plot, so that ``aspect * size`` gives the *width* in inches. Only used if a ``size`` is provided. size : scalar, optional If provided, create a new figure for the plot with the given size: *height* (in inches) of each plot. See also: ``aspect``. ax : matplotlib axes object, optional Axes on which to plot. By default, use the current axes. Mutually exclusive with ``size`` and ``figsize``. xincrease : bool or None, optional Should the values on the *x* axis be increasing from left to right? if ``None``, use the default for the Matplotlib function. yincrease : bool or None, optional Should the values on the *y* axis be increasing from top to bottom? if ``None``, use the default for the Matplotlib function. xscale, yscale : {'linear', 'symlog', 'log', 'logit'}, optional Specifies scaling for the *x*- and *y*-axis, respectively. xticks, yticks : array-like, optional Specify tick locations for *x*- and *y*-axis. xlim, ylim : tuple[float, float], optional Specify *x*- and *y*-axis limits. **kwargs : optional Additional keyword arguments to :py:func:`matplotlib:matplotlib.pyplot.hist`. """ assert len(args) == 0 if darray.ndim == 0 or darray.size == 0: # TypeError to be consistent with pandas raise TypeError("No numeric data to plot.") ax = get_axis(figsize, size, aspect, ax) no_nan = np.ravel(darray.to_numpy()) no_nan = no_nan[pd.notnull(no_nan)] n, bins, patches = cast( tuple[np.ndarray, np.ndarray, Union["BarContainer", "Polygon"]], ax.hist(no_nan, **kwargs), ) ax.set_title(darray._title_for_slice()) ax.set_xlabel(label_from_attrs(darray)) _update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim) return n, bins, patches def _plot1d(plotfunc): """Decorator for common 1d plotting logic.""" commondoc = """ Parameters ---------- darray : DataArray Must be 2 dimensional, unless creating faceted plots. x : Hashable or None, optional Coordinate for x axis. If None use darray.dims[1]. y : Hashable or None, optional Coordinate for y axis. If None use darray.dims[0]. z : Hashable or None, optional If specified plot 3D and use this coordinate for *z* axis. hue : Hashable or None, optional Dimension or coordinate for which you want multiple lines plotted. markersize: Hashable or None, optional scatter only. Variable by which to vary size of scattered points. linewidth: Hashable or None, optional Variable by which to vary linewidth. row : Hashable, optional If passed, make row faceted plots on this dimension name. col : Hashable, optional If passed, make column faceted plots on this dimension name. col_wrap : int, optional Use together with ``col`` to wrap faceted plots ax : matplotlib axes object, optional If None, uses the current axis. Not applicable when using facets. figsize : Iterable[float] or None, optional A tuple (width, height) of the figure in inches. Mutually exclusive with ``size`` and ``ax``. size : scalar, optional If provided, create a new figure for the plot with the given size. Height (in inches) of each plot. See also: ``aspect``. aspect : "auto", "equal", scalar or None, optional Aspect ratio of plot, so that ``aspect * size`` gives the width in inches. Only used if a ``size`` is provided. xincrease : bool or None, default: True Should the values on the x axes be increasing from left to right? if None, use the default for the matplotlib function. yincrease : bool or None, default: True Should the values on the y axes be increasing from top to bottom? if None, use the default for the matplotlib function. add_legend : bool or None, optional If True use xarray metadata to add a legend. add_colorbar : bool or None, optional If True add a colorbar. add_labels : bool or None, optional If True use xarray metadata to label axes add_title : bool or None, optional If True use xarray metadata to add a title subplot_kws : dict, optional Dictionary of keyword arguments for matplotlib subplots. Only applies to FacetGrid plotting. xscale : {'linear', 'symlog', 'log', 'logit'} or None, optional Specifies scaling for the x-axes. yscale : {'linear', 'symlog', 'log', 'logit'} or None, optional Specifies scaling for the y-axes. xticks : ArrayLike or None, optional Specify tick locations for x-axes. yticks : ArrayLike or None, optional Specify tick locations for y-axes. xlim : tuple[float, float] or None, optional Specify x-axes limits. ylim : tuple[float, float] or None, optional Specify y-axes limits. cmap : matplotlib colormap name or colormap, optional The mapping from data values to color space. Either a Matplotlib colormap name or object. If not provided, this will be either ``'viridis'`` (if the function infers a sequential dataset) or ``'RdBu_r'`` (if the function infers a diverging dataset). See :doc:`Choosing Colormaps in Matplotlib ` for more information. If *seaborn* is installed, ``cmap`` may also be a `seaborn color palette `_. Note: if ``cmap`` is a seaborn color palette, ``levels`` must also be specified. vmin : float or None, optional Lower value to anchor the colormap, otherwise it is inferred from the data and other keyword arguments. When a diverging dataset is inferred, setting `vmin` or `vmax` will fix the other by symmetry around ``center``. Setting both values prevents use of a diverging colormap. If discrete levels are provided as an explicit list, both of these values are ignored. vmax : float or None, optional Upper value to anchor the colormap, otherwise it is inferred from the data and other keyword arguments. When a diverging dataset is inferred, setting `vmin` or `vmax` will fix the other by symmetry around ``center``. Setting both values prevents use of a diverging colormap. If discrete levels are provided as an explicit list, both of these values are ignored. norm : matplotlib.colors.Normalize, optional If ``norm`` has ``vmin`` or ``vmax`` specified, the corresponding kwarg must be ``None``. extend : {'neither', 'both', 'min', 'max'}, optional How to draw arrows extending the colorbar beyond its limits. If not provided, ``extend`` is inferred from ``vmin``, ``vmax`` and the data limits. levels : int or array-like, optional Split the colormap (``cmap``) into discrete color intervals. If an integer is provided, "nice" levels are chosen based on the data range: this can imply that the final number of levels is not exactly the expected one. Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to setting ``levels=np.linspace(vmin, vmax, N)``. **kwargs : optional Additional arguments to wrapped matplotlib function Returns ------- artist : The same type of primitive artist that the wrapped matplotlib function returns """ # Build on the original docstring plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}" @functools.wraps( plotfunc, assigned=("__module__", "__name__", "__qualname__", "__doc__") ) def newplotfunc( darray: DataArray, *args: Any, x: Hashable | None = None, y: Hashable | None = None, z: Hashable | None = None, hue: Hashable | None = None, hue_style: HueStyleOptions = None, markersize: Hashable | None = None, linewidth: Hashable | None = None, row: Hashable | None = None, col: Hashable | None = None, col_wrap: int | None = None, ax: Axes | None = None, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_legend: bool | None = None, add_colorbar: bool | None = None, add_labels: bool | Iterable[bool] = True, add_title: bool = True, subplot_kws: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, cmap: str | Colormap | None = None, vmin: float | None = None, vmax: float | None = None, norm: Normalize | None = None, extend: ExtendOptions = None, levels: ArrayLike | None = None, **kwargs, ) -> Any: # All 1d plots in xarray share this function signature. # Method signature below should be consistent. if TYPE_CHECKING: import matplotlib.pyplot as plt else: plt = attempt_import("matplotlib.pyplot") if subplot_kws is None: subplot_kws = dict() # Handle facetgrids first if row or col: if z is not None: subplot_kws.update(projection="3d") allargs = locals().copy() allargs.update(allargs.pop("kwargs")) allargs.pop("darray") allargs.pop("plt") allargs["plotfunc"] = globals()[plotfunc.__name__] return _easy_facetgrid(darray, kind="plot1d", **allargs) if darray.ndim == 0 or darray.size == 0: # TypeError to be consistent with pandas raise TypeError("No numeric data to plot.") # The allargs dict passed to _easy_facetgrid above contains args if args == (): args = kwargs.pop("args", ()) if args: assert "args" not in kwargs # TODO: Deprecated since 2022.10: msg = "Using positional arguments is deprecated for plot methods, use keyword arguments instead." assert x is None x = args[0] if len(args) > 1: assert y is None y = args[1] if len(args) > 2: assert z is None z = args[2] if len(args) > 3: assert hue is None hue = args[3] if len(args) > 4: raise ValueError(msg) else: warnings.warn(msg, DeprecationWarning, stacklevel=2) del args if hue_style is not None: # TODO: Not used since 2022.10. Deprecated since 2023.07. warnings.warn( ( "hue_style is no longer used for plot1d plots " "and the argument will eventually be removed. " "Convert numbers to string for a discrete hue " "and use add_legend or add_colorbar to control which guide to display." ), DeprecationWarning, stacklevel=2, ) _is_facetgrid = kwargs.pop("_is_facetgrid", False) if plotfunc.__name__ == "scatter": size_ = kwargs.pop("_size", markersize) size_r = _MARKERSIZE_RANGE # Remove any nulls, .where(m, drop=True) doesn't work when m is # a dask array, so load the array to memory. # It will have to be loaded to memory at some point anyway: darray = darray.compute() darray = darray.where(darray.notnull(), drop=True) else: size_ = kwargs.pop("_size", linewidth) size_r = _LINEWIDTH_RANGE # Get data to plot: coords_to_plot: MutableMapping[str, Hashable | None] = dict( x=x, z=z, hue=hue, size=size_ ) if not _is_facetgrid: # Guess what coords to use if some of the values in coords_to_plot are None: coords_to_plot = _guess_coords_to_plot(darray, coords_to_plot, kwargs) plts = _prepare_plot1d_data(darray, coords_to_plot, plotfunc.__name__) xplt = plts.pop("x", None) yplt = plts.pop("y", None) zplt = plts.pop("z", None) kwargs.update(zplt=zplt) hueplt = plts.pop("hue", None) sizeplt = plts.pop("size", None) # Handle size and hue: hueplt_norm = _Normalize(data=hueplt) kwargs.update(hueplt=hueplt_norm.values) sizeplt_norm = _Normalize( data=sizeplt, width=size_r, _is_facetgrid=_is_facetgrid ) kwargs.update(sizeplt=sizeplt_norm.values) cmap_params_subset = kwargs.pop("cmap_params_subset", {}) cbar_kwargs = kwargs.pop("cbar_kwargs", {}) if hueplt_norm.data is not None: if not hueplt_norm.data_is_numeric: # Map hue values back to its original value: cbar_kwargs.update(format=hueplt_norm.format, ticks=hueplt_norm.ticks) levels = kwargs.get("levels", hueplt_norm.levels) cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs( plotfunc, cast("DataArray", hueplt_norm.values).data, **locals(), ) # subset that can be passed to scatter, hist2d if not cmap_params_subset: ckw = {vv: cmap_params[vv] for vv in ("vmin", "vmax", "norm", "cmap")} cmap_params_subset.update(**ckw) with plt.rc_context(_styles): if z is not None: import mpl_toolkits if ax is None: subplot_kws.update(projection="3d") ax = get_axis(figsize, size, aspect, ax, **subplot_kws) assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D) # Using 30, 30 minimizes rotation of the plot. Making it easier to # build on your intuition from 2D plots: ax.view_init(azim=30, elev=30, vertical_axis="y") else: ax = get_axis(figsize, size, aspect, ax, **subplot_kws) primitive = plotfunc( xplt, yplt, ax=ax, add_labels=add_labels, **cmap_params_subset, **kwargs, ) if np.any(np.asarray(add_labels)) and add_title: ax.set_title(darray._title_for_slice()) add_colorbar_, add_legend_ = _determine_guide( hueplt_norm, sizeplt_norm, add_colorbar, add_legend, plotfunc_name=plotfunc.__name__, ) if add_colorbar_: if "label" not in cbar_kwargs: cbar_kwargs["label"] = label_from_attrs(hueplt_norm.data) _add_colorbar( primitive, ax, kwargs.get("cbar_ax"), cbar_kwargs, cmap_params ) if add_legend_: if plotfunc.__name__ in ["scatter", "line"]: _add_legend( ( hueplt_norm if add_legend or not add_colorbar_ else _Normalize(None) ), sizeplt_norm, primitive, legend_ax=ax, plotfunc=plotfunc.__name__, ) else: hueplt_norm_values: list[np.ndarray | None] if hueplt_norm.data is not None: hueplt_norm_values = list(hueplt_norm.data.to_numpy()) else: hueplt_norm_values = [hueplt_norm.data] if plotfunc.__name__ == "hist": ax.legend( handles=primitive[-1], labels=hueplt_norm_values, title=label_from_attrs(hueplt_norm.data), ) else: ax.legend( handles=primitive, labels=hueplt_norm_values, title=label_from_attrs(hueplt_norm.data), ) _update_axes( ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim ) return primitive # we want to actually expose the signature of newplotfunc # and not the copied **kwargs from the plotfunc which # functools.wraps adds, so delete the wrapped attr del newplotfunc.__wrapped__ return newplotfunc def _add_labels( add_labels: bool | Iterable[bool], darrays: Iterable[DataArray | None], suffixes: Iterable[str], ax: Axes, ) -> None: """Set x, y, z labels.""" add_labels = [add_labels] * 3 if isinstance(add_labels, bool) else add_labels axes: tuple[Literal["x", "y", "z"], ...] = ("x", "y", "z") for axis, add_label, darray, suffix in zip( axes, add_labels, darrays, suffixes, strict=True ): if darray is None: continue if add_label: label = label_from_attrs(darray, extra=suffix) if label is not None: getattr(ax, f"set_{axis}label")(label) if np.issubdtype(darray.dtype, np.datetime64): _set_concise_date(ax, axis=axis) @overload def scatter( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, *args: Any, x: Hashable | None = None, y: Hashable | None = None, z: Hashable | None = None, hue: Hashable | None = None, hue_style: HueStyleOptions = None, markersize: Hashable | None = None, linewidth: Hashable | None = None, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, ax: Axes | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_legend: bool | None = None, add_colorbar: bool | None = None, add_labels: bool | Iterable[bool] = True, add_title: bool = True, subplot_kws: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, cmap: str | Colormap | None = None, vmin: float | None = None, vmax: float | None = None, norm: Normalize | None = None, extend: ExtendOptions = None, levels: ArrayLike | None = None, **kwargs, ) -> PathCollection: ... @overload def scatter( darray: T_DataArray, *args: Any, x: Hashable | None = None, y: Hashable | None = None, z: Hashable | None = None, hue: Hashable | None = None, hue_style: HueStyleOptions = None, markersize: Hashable | None = None, linewidth: Hashable | None = None, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_legend: bool | None = None, add_colorbar: bool | None = None, add_labels: bool | Iterable[bool] = True, add_title: bool = True, subplot_kws: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, cmap: str | Colormap | None = None, vmin: float | None = None, vmax: float | None = None, norm: Normalize | None = None, extend: ExtendOptions = None, levels: ArrayLike | None = None, **kwargs, ) -> FacetGrid[T_DataArray]: ... @overload def scatter( darray: T_DataArray, *args: Any, x: Hashable | None = None, y: Hashable | None = None, z: Hashable | None = None, hue: Hashable | None = None, hue_style: HueStyleOptions = None, markersize: Hashable | None = None, linewidth: Hashable | None = None, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, ax: Axes | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_legend: bool | None = None, add_colorbar: bool | None = None, add_labels: bool | Iterable[bool] = True, add_title: bool = True, subplot_kws: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, cmap: str | Colormap | None = None, vmin: float | None = None, vmax: float | None = None, norm: Normalize | None = None, extend: ExtendOptions = None, levels: ArrayLike | None = None, **kwargs, ) -> FacetGrid[T_DataArray]: ... @_plot1d def scatter( xplt: DataArray | None, yplt: DataArray | None, ax: Axes, add_labels: bool | Iterable[bool] = True, **kwargs, ) -> PathCollection: """Scatter variables against each other. Wraps :py:func:`matplotlib:matplotlib.pyplot.scatter`. """ if "u" in kwargs or "v" in kwargs: raise ValueError("u, v are not allowed in scatter plots.") zplt: DataArray | None = kwargs.pop("zplt", None) hueplt: DataArray | None = kwargs.pop("hueplt", None) sizeplt: DataArray | None = kwargs.pop("sizeplt", None) if hueplt is not None: kwargs.update(c=hueplt.to_numpy().ravel()) if sizeplt is not None: kwargs.update(s=sizeplt.to_numpy().ravel()) plts_or_none = (xplt, yplt, zplt) _add_labels(add_labels, plts_or_none, ("", "", ""), ax) xplt_np = None if xplt is None else xplt.to_numpy().ravel() yplt_np = None if yplt is None else yplt.to_numpy().ravel() zplt_np = None if zplt is None else zplt.to_numpy().ravel() plts_np = tuple(p for p in (xplt_np, yplt_np, zplt_np) if p is not None) if len(plts_np) == 3: import mpl_toolkits assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D) return ax.scatter(xplt_np, yplt_np, zplt_np, **kwargs) if len(plts_np) == 2: return ax.scatter(plts_np[0], plts_np[1], **kwargs) raise ValueError("At least two variables required for a scatter plot.") def _plot2d(plotfunc): """Decorator for common 2d plotting logic.""" commondoc = """ Parameters ---------- darray : DataArray Must be two-dimensional, unless creating faceted plots. x : Hashable or None, optional Coordinate for *x* axis. If ``None``, use ``darray.dims[1]``. y : Hashable or None, optional Coordinate for *y* axis. If ``None``, use ``darray.dims[0]``. figsize : Iterable or float or None, optional A tuple (width, height) of the figure in inches. Mutually exclusive with ``size`` and ``ax``. size : scalar, optional If provided, create a new figure for the plot with the given size: *height* (in inches) of each plot. See also: ``aspect``. aspect : "auto", "equal", scalar or None, optional Aspect ratio of plot, so that ``aspect * size`` gives the *width* in inches. Only used if a ``size`` is provided. ax : matplotlib axes object, optional Axes on which to plot. By default, use the current axes. Mutually exclusive with ``size`` and ``figsize``. row : Hashable or None, optional If passed, make row faceted plots on this dimension name. col : Hashable or None, optional If passed, make column faceted plots on this dimension name. col_wrap : int, optional Use together with ``col`` to wrap faceted plots. xincrease : None, True, or False, optional Should the values on the *x* axis be increasing from left to right? If ``None``, use the default for the Matplotlib function. yincrease : None, True, or False, optional Should the values on the *y* axis be increasing from top to bottom? If ``None``, use the default for the Matplotlib function. add_colorbar : bool, optional Add colorbar to axes. add_labels : bool, optional Use xarray metadata to label axes. vmin : float or None, optional Lower value to anchor the colormap, otherwise it is inferred from the data and other keyword arguments. When a diverging dataset is inferred, setting `vmin` or `vmax` will fix the other by symmetry around ``center``. Setting both values prevents use of a diverging colormap. If discrete levels are provided as an explicit list, both of these values are ignored. vmax : float or None, optional Upper value to anchor the colormap, otherwise it is inferred from the data and other keyword arguments. When a diverging dataset is inferred, setting `vmin` or `vmax` will fix the other by symmetry around ``center``. Setting both values prevents use of a diverging colormap. If discrete levels are provided as an explicit list, both of these values are ignored. cmap : matplotlib colormap name or colormap, optional The mapping from data values to color space. If not provided, this will be either be ``'viridis'`` (if the function infers a sequential dataset) or ``'RdBu_r'`` (if the function infers a diverging dataset). See :doc:`Choosing Colormaps in Matplotlib ` for more information. If *seaborn* is installed, ``cmap`` may also be a `seaborn color palette `_. Note: if ``cmap`` is a seaborn color palette and the plot type is not ``'contour'`` or ``'contourf'``, ``levels`` must also be specified. center : float or False, optional The value at which to center the colormap. Passing this value implies use of a diverging colormap. Setting it to ``False`` prevents use of a diverging colormap. robust : bool, optional If ``True`` and ``vmin`` or ``vmax`` are absent, the colormap range is computed with 2nd and 98th percentiles instead of the extreme values. extend : {'neither', 'both', 'min', 'max'}, optional How to draw arrows extending the colorbar beyond its limits. If not provided, ``extend`` is inferred from ``vmin``, ``vmax`` and the data limits. levels : int or array-like, optional Split the colormap (``cmap``) into discrete color intervals. If an integer is provided, "nice" levels are chosen based on the data range: this can imply that the final number of levels is not exactly the expected one. Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to setting ``levels=np.linspace(vmin, vmax, N)``. infer_intervals : bool, optional Only applies to pcolormesh. If ``True``, the coordinate intervals are passed to pcolormesh. If ``False``, the original coordinates are used (this can be useful for certain map projections). The default is to always infer intervals, unless the mesh is irregular and plotted on a map projection. colors : str or array-like of color-like, optional A single color or a sequence of colors. If the plot type is not ``'contour'`` or ``'contourf'``, the ``levels`` argument is required. subplot_kws : dict, optional Dictionary of keyword arguments for Matplotlib subplots. Only used for 2D and faceted plots. (see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`). cbar_ax : matplotlib axes object, optional Axes in which to draw the colorbar. cbar_kwargs : dict, optional Dictionary of keyword arguments to pass to the colorbar (see :meth:`matplotlib:matplotlib.figure.Figure.colorbar`). xscale : {'linear', 'symlog', 'log', 'logit'} or None, optional Specifies scaling for the x-axes. yscale : {'linear', 'symlog', 'log', 'logit'} or None, optional Specifies scaling for the y-axes. xticks : ArrayLike or None, optional Specify tick locations for x-axes. yticks : ArrayLike or None, optional Specify tick locations for y-axes. xlim : tuple[float, float] or None, optional Specify x-axes limits. ylim : tuple[float, float] or None, optional Specify y-axes limits. norm : matplotlib.colors.Normalize, optional If ``norm`` has ``vmin`` or ``vmax`` specified, the corresponding kwarg must be ``None``. **kwargs : optional Additional keyword arguments to wrapped Matplotlib function. Returns ------- artist : The same type of primitive artist that the wrapped Matplotlib function returns. """ # Build on the original docstring plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}" @functools.wraps( plotfunc, assigned=("__module__", "__name__", "__qualname__", "__doc__") ) def newplotfunc( darray: DataArray, *args: Any, x: Hashable | None = None, y: Hashable | None = None, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: tuple[float, float] | None = None, ylim: tuple[float, float] | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> Any: # All 2d plots in xarray share this function signature. if args: # TODO: Deprecated since 2022.10: msg = "Using positional arguments is deprecated for plot methods, use keyword arguments instead." assert x is None x = args[0] if len(args) > 1: assert y is None y = args[1] if len(args) > 2: raise ValueError(msg) else: warnings.warn(msg, DeprecationWarning, stacklevel=2) del args # Decide on a default for the colorbar before facetgrids if add_colorbar is None: add_colorbar = True if plotfunc.__name__ == "contour" or ( plotfunc.__name__ == "surface" and cmap is None ): add_colorbar = False imshow_rgb = plotfunc.__name__ == "imshow" and darray.ndim == ( 3 + (row is not None) + (col is not None) ) if imshow_rgb: # Don't add a colorbar when showing an image with explicit colors add_colorbar = False # Matplotlib does not support normalising RGB data, so do it here. # See eg. https://github.com/matplotlib/matplotlib/pull/10220 if robust or vmax is not None or vmin is not None: darray = _rescale_imshow_rgb(darray.as_numpy(), vmin, vmax, robust) vmin, vmax, robust = None, None, False if subplot_kws is None: subplot_kws = dict() if plotfunc.__name__ == "surface" and not kwargs.get("_is_facetgrid", False): if ax is None: # TODO: Importing Axes3D is no longer necessary in matplotlib >= 3.2. # Remove when minimum requirement of matplotlib is 3.2: from mpl_toolkits.mplot3d import Axes3D # delete so it does not end up in locals() del Axes3D # Need to create a "3d" Axes instance for surface plots subplot_kws["projection"] = "3d" # In facet grids, shared axis labels don't make sense for surface plots sharex = False sharey = False # Handle facetgrids first if row or col: allargs = locals().copy() del allargs["darray"] del allargs["imshow_rgb"] allargs.update(allargs.pop("kwargs")) # Need the decorated plotting function allargs["plotfunc"] = globals()[plotfunc.__name__] return _easy_facetgrid(darray, kind="dataarray", **allargs) if darray.ndim == 0 or darray.size == 0: # TypeError to be consistent with pandas raise TypeError("No numeric data to plot.") if ( plotfunc.__name__ == "surface" and not kwargs.get("_is_facetgrid", False) and ax is not None ): import mpl_toolkits if not isinstance(ax, mpl_toolkits.mplot3d.Axes3D): raise ValueError( "If ax is passed to surface(), it must be created with " 'projection="3d"' ) rgb = kwargs.pop("rgb", None) if rgb is not None and plotfunc.__name__ != "imshow": raise ValueError('The "rgb" keyword is only valid for imshow()') elif rgb is not None and not imshow_rgb: raise ValueError( 'The "rgb" keyword is only valid for imshow()' "with a three-dimensional array (per facet)" ) xlab, ylab = _infer_xy_labels( darray=darray, x=x, y=y, imshow=imshow_rgb, rgb=rgb ) xval = darray[xlab] yval = darray[ylab] if xval.ndim > 1 or yval.ndim > 1 or plotfunc.__name__ == "surface": # Passing 2d coordinate values, need to ensure they are transposed the same # way as darray. # Also surface plots always need 2d coordinates xval = xval.broadcast_like(darray) yval = yval.broadcast_like(darray) dims = darray.dims else: dims = (yval.dims[0], xval.dims[0]) # May need to transpose for correct x, y labels # xlab may be the name of a coord, we have to check for dim names if imshow_rgb: # For RGB[A] images, matplotlib requires the color dimension # to be last. In Xarray the order should be unimportant, so # we transpose to (y, x, color) to make this work. yx_dims = (ylab, xlab) dims = yx_dims + tuple(d for d in darray.dims if d not in yx_dims) if dims != darray.dims: darray = darray.transpose(*dims, transpose_coords=True) # better to pass the ndarrays directly to plotting functions xvalnp = xval.to_numpy() yvalnp = yval.to_numpy() # Pass the data as a masked ndarray too zval = darray.to_masked_array(copy=False) # Replace pd.Intervals if contained in xval or yval. xplt, xlab_extra = _resolve_intervals_2dplot(xvalnp, plotfunc.__name__) yplt, ylab_extra = _resolve_intervals_2dplot(yvalnp, plotfunc.__name__) _ensure_plottable(xplt, yplt, zval) cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs( plotfunc, zval.data, **locals(), _is_facetgrid=kwargs.pop("_is_facetgrid", False), ) if "contour" in plotfunc.__name__: # extend is a keyword argument only for contour and contourf, but # passing it to the colorbar is sufficient for imshow and # pcolormesh kwargs["extend"] = cmap_params["extend"] kwargs["levels"] = cmap_params["levels"] # if colors == a single color, matplotlib draws dashed negative # contours. we lose this feature if we pass cmap and not colors if isinstance(colors, str): cmap_params["cmap"] = None kwargs["colors"] = colors if "pcolormesh" == plotfunc.__name__: kwargs["infer_intervals"] = infer_intervals kwargs["xscale"] = xscale kwargs["yscale"] = yscale if "imshow" == plotfunc.__name__ and isinstance(aspect, str): # forbid usage of mpl strings raise ValueError("plt.imshow's `aspect` kwarg is not available in xarray") ax = get_axis(figsize, size, aspect, ax, **subplot_kws) primitive = plotfunc( xplt, yplt, zval, ax=ax, cmap=cmap_params["cmap"], vmin=cmap_params["vmin"], vmax=cmap_params["vmax"], norm=cmap_params["norm"], **kwargs, ) # Label the plot with metadata if add_labels: ax.set_xlabel(label_from_attrs(darray[xlab], xlab_extra)) ax.set_ylabel(label_from_attrs(darray[ylab], ylab_extra)) ax.set_title(darray._title_for_slice()) if plotfunc.__name__ == "surface": import mpl_toolkits assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D) ax.set_zlabel(label_from_attrs(darray)) if add_colorbar: if add_labels and "label" not in cbar_kwargs: cbar_kwargs["label"] = label_from_attrs(darray) cbar = _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params) elif cbar_ax is not None or cbar_kwargs: # inform the user about keywords which aren't used raise ValueError( "cbar_ax and cbar_kwargs can't be used with add_colorbar=False." ) # origin kwarg overrides yincrease if "origin" in kwargs: yincrease = None _update_axes( ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim ) if np.issubdtype(xplt.dtype, np.datetime64): _set_concise_date(ax, "x") return primitive # we want to actually expose the signature of newplotfunc # and not the copied **kwargs from the plotfunc which # functools.wraps adds, so delete the wrapped attr del newplotfunc.__wrapped__ return newplotfunc @overload def imshow( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, ax: Axes | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> AxesImage: ... @overload def imshow( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @overload def imshow( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @_plot2d def imshow( x: np.ndarray, y: np.ndarray, z: np.ma.core.MaskedArray, ax: Axes, **kwargs: Any ) -> AxesImage: """ Image plot of 2D DataArray. Wraps :py:func:`matplotlib:matplotlib.pyplot.imshow`. While other plot methods require the DataArray to be strictly two-dimensional, ``imshow`` also accepts a 3D array where some dimension can be interpreted as RGB or RGBA color channels and allows this dimension to be specified via the kwarg ``rgb=``. Unlike :py:func:`matplotlib:matplotlib.pyplot.imshow`, which ignores ``vmin``/``vmax`` for RGB(A) data, xarray *will* use ``vmin`` and ``vmax`` for RGB(A) data by applying a single scaling factor and offset to all bands. Passing ``robust=True`` infers ``vmin`` and ``vmax`` :ref:`in the usual way `. Additionally the y-axis is not inverted by default, you can restore the matplotlib behavior by setting `yincrease=False`. .. note:: This function needs uniformly spaced coordinates to properly label the axes. Call :py:meth:`DataArray.plot` to check. The pixels are centered on the coordinates. For example, if the coordinate value is 3.2, then the pixels for those coordinates will be centered on 3.2. """ if x.ndim != 1 or y.ndim != 1: raise ValueError( "imshow requires 1D coordinates, try using pcolormesh or contour(f)" ) def _center_pixels(x): """Center the pixels on the coordinates.""" if np.issubdtype(x.dtype, str): # When using strings as inputs imshow converts it to # integers. Choose extent values which puts the indices in # in the center of the pixels: return 0 - 0.5, len(x) - 0.5 try: # Center the pixels assuming uniform spacing: xstep = 0.5 * (x[1] - x[0]) except IndexError: # Arbitrary default value, similar to matplotlib behaviour: xstep = 0.1 return x[0] - xstep, x[-1] + xstep # Center the pixels: left, right = _center_pixels(x) top, bottom = _center_pixels(y) defaults: dict[str, Any] = {"origin": "upper", "interpolation": "nearest"} if not hasattr(ax, "projection"): # not for cartopy geoaxes defaults["aspect"] = "auto" # Allow user to override these defaults defaults.update(kwargs) if defaults["origin"] == "upper": defaults["extent"] = [left, right, bottom, top] else: defaults["extent"] = [left, right, top, bottom] if z.ndim == 3: # matplotlib imshow uses black for missing data, but Xarray makes # missing data transparent. We therefore add an alpha channel if # there isn't one, and set it to transparent where data is masked. if z.shape[-1] == 3: safe_dtype = np.promote_types(z.dtype, np.uint8) alpha = np.ma.ones(z.shape[:2] + (1,), dtype=safe_dtype) if np.issubdtype(z.dtype, np.integer): alpha[:] = 255 z = np.ma.concatenate((z, alpha), axis=2) else: z = z.copy() z[np.any(z.mask, axis=-1), -1] = 0 primitive = ax.imshow(z, **defaults) # If x or y are strings the ticklabels have been replaced with # integer indices. Replace them back to strings: for axis, v in [("x", x), ("y", y)]: if np.issubdtype(v.dtype, str): getattr(ax, f"set_{axis}ticks")(np.arange(len(v))) getattr(ax, f"set_{axis}ticklabels")(v) return primitive @overload def contour( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: float | None = None, ax: Axes | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> QuadContourSet: ... @overload def contour( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @overload def contour( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @_plot2d def contour( x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, **kwargs: Any ) -> QuadContourSet: """ Contour plot of 2D DataArray. Wraps :py:func:`matplotlib:matplotlib.pyplot.contour`. """ primitive = ax.contour(x, y, z, **kwargs) return primitive @overload def contourf( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> QuadContourSet: ... @overload def contourf( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @overload def contourf( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @_plot2d def contourf( x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, **kwargs: Any ) -> QuadContourSet: """ Filled contour plot of 2D DataArray. Wraps :py:func:`matplotlib:matplotlib.pyplot.contourf`. """ primitive = ax.contourf(x, y, z, **kwargs) return primitive @overload def pcolormesh( # type: ignore[misc,unused-ignore] # None is hashable :( darray: DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> QuadMesh: ... @overload def pcolormesh( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @overload def pcolormesh( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @_plot2d def pcolormesh( x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, xscale: ScaleOptions | None = None, yscale: ScaleOptions | None = None, infer_intervals=None, **kwargs: Any, ) -> QuadMesh: """ Pseudocolor plot of 2D DataArray. Wraps :py:func:`matplotlib:matplotlib.pyplot.pcolormesh`. """ # decide on a default for infer_intervals (GH781) x = np.asarray(x) if infer_intervals is None: if hasattr(ax, "projection"): if len(x.shape) == 1: infer_intervals = True else: infer_intervals = False else: infer_intervals = True if any(np.issubdtype(k.dtype, str) for k in (x, y)): # do not infer intervals if any axis contains str ticks, see #6775 infer_intervals = False if infer_intervals and ( (np.shape(x)[0] == np.shape(z)[1]) or ((x.ndim > 1) and (np.shape(x)[1] == np.shape(z)[1])) ): if x.ndim == 1: x = _infer_interval_breaks(x, check_monotonic=True, scale=xscale) else: # we have to infer the intervals on both axes x = _infer_interval_breaks(x, axis=1, scale=xscale) x = _infer_interval_breaks(x, axis=0, scale=xscale) if infer_intervals and (np.shape(y)[0] == np.shape(z)[0]): if y.ndim == 1: y = _infer_interval_breaks(y, check_monotonic=True, scale=yscale) else: # we have to infer the intervals on both axes y = _infer_interval_breaks(y, axis=1, scale=yscale) y = _infer_interval_breaks(y, axis=0, scale=yscale) ax.grid(False) primitive = ax.pcolormesh(x, y, z, **kwargs) # by default, pcolormesh picks "round" values for bounds # this results in ugly looking plots with lots of surrounding whitespace if not hasattr(ax, "projection") and x.ndim == 1 and y.ndim == 1: # not a cartopy geoaxis ax.set_xlim(x[0], x[-1]) ax.set_ylim(y[0], y[-1]) return primitive @overload def surface( darray: DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: None = None, # no wrap -> primitive col: None = None, # no wrap -> primitive col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> Poly3DCollection: ... @overload def surface( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable | None = None, col: Hashable, # wrap -> FacetGrid col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @overload def surface( darray: T_DataArray, x: Hashable | None = None, y: Hashable | None = None, *, figsize: Iterable[float] | None = None, size: float | None = None, aspect: AspectOptions = None, ax: Axes | None = None, row: Hashable, # wrap -> FacetGrid col: Hashable | None = None, col_wrap: int | None = None, xincrease: bool | None = True, yincrease: bool | None = True, add_colorbar: bool | None = None, add_labels: bool = True, vmin: float | None = None, vmax: float | None = None, cmap: str | Colormap | None = None, center: float | Literal[False] | None = None, robust: bool = False, extend: ExtendOptions = None, levels: ArrayLike | None = None, infer_intervals=None, colors: str | ArrayLike | None = None, subplot_kws: dict[str, Any] | None = None, cbar_ax: Axes | None = None, cbar_kwargs: dict[str, Any] | None = None, xscale: ScaleOptions = None, yscale: ScaleOptions = None, xticks: ArrayLike | None = None, yticks: ArrayLike | None = None, xlim: ArrayLike | None = None, ylim: ArrayLike | None = None, norm: Normalize | None = None, **kwargs: Any, ) -> FacetGrid[T_DataArray]: ... @_plot2d def surface( x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, **kwargs: Any ) -> Poly3DCollection: """ Surface plot of 2D DataArray. Wraps :py:meth:`matplotlib:mpl_toolkits.mplot3d.axes3d.Axes3D.plot_surface`. """ import mpl_toolkits assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D) primitive = ax.plot_surface(x, y, z, **kwargs) return primitive