"""Testing functions exposed to the user API""" import functools import warnings from collections.abc import Hashable import numpy as np import pandas as pd from xarray.core import duck_array_ops, formatting, utils from xarray.core.coordinates import Coordinates from xarray.core.dataarray import DataArray from xarray.core.dataset import Dataset from xarray.core.datatree import DataTree from xarray.core.formatting import diff_datatree_repr from xarray.core.indexes import Index, PandasIndex, PandasMultiIndex, default_indexes from xarray.core.variable import IndexVariable, Variable def ensure_warnings(func): # sometimes tests elevate warnings to errors # -> make sure that does not happen in the assert_* functions @functools.wraps(func) def wrapper(*args, **kwargs): __tracebackhide__ = True with warnings.catch_warnings(): # only remove filters that would "error" warnings.filters = [f for f in warnings.filters if f[0] != "error"] return func(*args, **kwargs) return wrapper def _decode_string_data(data): if data.dtype.kind == "S": return np.char.decode(data, "utf-8", "replace") return data def _data_allclose_or_equiv(arr1, arr2, rtol=1e-05, atol=1e-08, decode_bytes=True): if any(arr.dtype.kind == "S" for arr in [arr1, arr2]) and decode_bytes: arr1 = _decode_string_data(arr1) arr2 = _decode_string_data(arr2) exact_dtypes = ["M", "m", "O", "S", "U"] if any(arr.dtype.kind in exact_dtypes for arr in [arr1, arr2]): return duck_array_ops.array_equiv(arr1, arr2) else: return duck_array_ops.allclose_or_equiv(arr1, arr2, rtol=rtol, atol=atol) @ensure_warnings def assert_isomorphic(a: DataTree, b: DataTree): """ Two DataTrees are considered isomorphic if the set of paths to their descendent nodes are the same. Nothing about the data or attrs in each node is checked. Isomorphism is a necessary condition for two trees to be used in a nodewise binary operation, such as tree1 + tree2. Parameters ---------- a : DataTree The first object to compare. b : DataTree The second object to compare. See Also -------- DataTree.isomorphic assert_equal assert_identical """ __tracebackhide__ = True assert isinstance(a, type(b)) if isinstance(a, DataTree): assert a.isomorphic(b), diff_datatree_repr(a, b, "isomorphic") else: raise TypeError(f"{type(a)} not of type DataTree") def maybe_transpose_dims(a, b, check_dim_order: bool): """Helper for assert_equal/allclose/identical""" __tracebackhide__ = True if not isinstance(a, Variable | DataArray | Dataset): return b if not check_dim_order and set(a.dims) == set(b.dims): # Ensure transpose won't fail if a dimension is missing # If this is the case, the difference will be caught by the caller return b.transpose(*a.dims) return b @ensure_warnings def assert_equal(a, b, check_dim_order: bool = True): """Like :py:func:`numpy.testing.assert_array_equal`, but for xarray objects. Raises an AssertionError if two objects are not equal. This will match data values, dimensions and coordinates, but not names or attributes (except for Dataset objects for which the variable names must match). Arrays with NaN in the same location are considered equal. For DataTree objects, assert_equal is mapped over all Datasets on each node, with the DataTrees being equal if both are isomorphic and the corresponding Datasets at each node are themselves equal. Parameters ---------- a : xarray.Dataset, xarray.DataArray, xarray.Variable, xarray.Coordinates or xarray.core.datatree.DataTree. The first object to compare. b : xarray.Dataset, xarray.DataArray, xarray.Variable, xarray.Coordinates or xarray.core.datatree.DataTree. The second object to compare. check_dim_order : bool, optional, default is True Whether dimensions must be in the same order. See Also -------- assert_identical, assert_allclose, Dataset.equals, DataArray.equals numpy.testing.assert_array_equal """ __tracebackhide__ = True assert type(a) is type(b) or ( isinstance(a, Coordinates) and isinstance(b, Coordinates) ) b = maybe_transpose_dims(a, b, check_dim_order) if isinstance(a, Variable | DataArray): assert a.equals(b), formatting.diff_array_repr(a, b, "equals") elif isinstance(a, Dataset): assert a.equals(b), formatting.diff_dataset_repr(a, b, "equals") elif isinstance(a, Coordinates): assert a.equals(b), formatting.diff_coords_repr(a, b, "equals") elif isinstance(a, DataTree): assert a.equals(b), diff_datatree_repr(a, b, "equals") else: raise TypeError(f"{type(a)} not supported by assertion comparison") @ensure_warnings def assert_identical(a, b): """Like :py:func:`xarray.testing.assert_equal`, but also matches the objects' names and attributes. Raises an AssertionError if two objects are not identical. For DataTree objects, assert_identical is mapped over all Datasets on each node, with the DataTrees being identical if both are isomorphic and the corresponding Datasets at each node are themselves identical. Parameters ---------- a : xarray.Dataset, xarray.DataArray, xarray.Variable or xarray.Coordinates The first object to compare. b : xarray.Dataset, xarray.DataArray, xarray.Variable or xarray.Coordinates The second object to compare. See Also -------- assert_equal, assert_allclose, Dataset.equals, DataArray.equals """ __tracebackhide__ = True assert type(a) is type(b) or ( isinstance(a, Coordinates) and isinstance(b, Coordinates) ) if isinstance(a, Variable): assert a.identical(b), formatting.diff_array_repr(a, b, "identical") elif isinstance(a, DataArray): assert ( a.name == b.name ), f"DataArray names are different. L: {a.name}, R: {b.name}" assert a.identical(b), formatting.diff_array_repr(a, b, "identical") elif isinstance(a, Dataset | Variable): assert a.identical(b), formatting.diff_dataset_repr(a, b, "identical") elif isinstance(a, Coordinates): assert a.identical(b), formatting.diff_coords_repr(a, b, "identical") elif isinstance(a, DataTree): assert a.identical(b), diff_datatree_repr(a, b, "identical") else: raise TypeError(f"{type(a)} not supported by assertion comparison") @ensure_warnings def assert_allclose( a, b, rtol=1e-05, atol=1e-08, decode_bytes=True, check_dim_order: bool = True ): """Like :py:func:`numpy.testing.assert_allclose`, but for xarray objects. Raises an AssertionError if two objects are not equal up to desired tolerance. Parameters ---------- a : xarray.Dataset, xarray.DataArray or xarray.Variable The first object to compare. b : xarray.Dataset, xarray.DataArray or xarray.Variable The second object to compare. rtol : float, optional Relative tolerance. atol : float, optional Absolute tolerance. decode_bytes : bool, optional Whether byte dtypes should be decoded to strings as UTF-8 or not. This is useful for testing serialization methods on Python 3 that return saved strings as bytes. check_dim_order : bool, optional, default is True Whether dimensions must be in the same order. See Also -------- assert_identical, assert_equal, numpy.testing.assert_allclose """ __tracebackhide__ = True assert type(a) is type(b) b = maybe_transpose_dims(a, b, check_dim_order) equiv = functools.partial( _data_allclose_or_equiv, rtol=rtol, atol=atol, decode_bytes=decode_bytes ) equiv.__name__ = "allclose" # type: ignore[attr-defined] def compat_variable(a, b): a = getattr(a, "variable", a) b = getattr(b, "variable", b) return a.dims == b.dims and (a._data is b._data or equiv(a.data, b.data)) if isinstance(a, Variable): allclose = compat_variable(a, b) assert allclose, formatting.diff_array_repr(a, b, compat=equiv) elif isinstance(a, DataArray): allclose = utils.dict_equiv( a.coords, b.coords, compat=compat_variable ) and compat_variable(a.variable, b.variable) assert allclose, formatting.diff_array_repr(a, b, compat=equiv) elif isinstance(a, Dataset): allclose = a._coord_names == b._coord_names and utils.dict_equiv( a.variables, b.variables, compat=compat_variable ) assert allclose, formatting.diff_dataset_repr(a, b, compat=equiv) else: raise TypeError(f"{type(a)} not supported by assertion comparison") def _format_message(x, y, err_msg, verbose): diff = x - y abs_diff = max(abs(diff)) rel_diff = "not implemented" n_diff = np.count_nonzero(diff) n_total = diff.size fraction = f"{n_diff} / {n_total}" percentage = float(n_diff / n_total * 100) parts = [ "Arrays are not equal", err_msg, f"Mismatched elements: {fraction} ({percentage:.0f}%)", f"Max absolute difference: {abs_diff}", f"Max relative difference: {rel_diff}", ] if verbose: parts += [ f" x: {x!r}", f" y: {y!r}", ] return "\n".join(parts) @ensure_warnings def assert_duckarray_allclose( actual, desired, rtol=1e-07, atol=0, err_msg="", verbose=True ): """Like `np.testing.assert_allclose`, but for duckarrays.""" __tracebackhide__ = True allclose = duck_array_ops.allclose_or_equiv(actual, desired, rtol=rtol, atol=atol) assert allclose, _format_message(actual, desired, err_msg=err_msg, verbose=verbose) @ensure_warnings def assert_duckarray_equal(x, y, err_msg="", verbose=True): """Like `np.testing.assert_array_equal`, but for duckarrays""" __tracebackhide__ = True if not utils.is_duck_array(x) and not utils.is_scalar(x): x = np.asarray(x) if not utils.is_duck_array(y) and not utils.is_scalar(y): y = np.asarray(y) if (utils.is_duck_array(x) and utils.is_scalar(y)) or ( utils.is_scalar(x) and utils.is_duck_array(y) ): equiv = (x == y).all() else: equiv = duck_array_ops.array_equiv(x, y) assert equiv, _format_message(x, y, err_msg=err_msg, verbose=verbose) def assert_chunks_equal(a, b): """ Assert that chunksizes along chunked dimensions are equal. Parameters ---------- a : xarray.Dataset or xarray.DataArray The first object to compare. b : xarray.Dataset or xarray.DataArray The second object to compare. """ if isinstance(a, DataArray) != isinstance(b, DataArray): raise TypeError("a and b have mismatched types") left = a.unify_chunks() right = b.unify_chunks() assert left.chunks == right.chunks def _assert_indexes_invariants_checks( indexes, possible_coord_variables, dims, check_default=True ): assert isinstance(indexes, dict), indexes assert all(isinstance(v, Index) for v in indexes.values()), { k: type(v) for k, v in indexes.items() } index_vars = { k for k, v in possible_coord_variables.items() if isinstance(v, IndexVariable) } assert indexes.keys() <= index_vars, (set(indexes), index_vars) # check pandas index wrappers vs. coordinate data adapters for k, index in indexes.items(): if isinstance(index, PandasIndex): pd_index = index.index var = possible_coord_variables[k] assert (index.dim,) == var.dims, (pd_index, var) if k == index.dim: # skip multi-index levels here (checked below) assert index.coord_dtype == var.dtype, (index.coord_dtype, var.dtype) assert isinstance(var._data.array, pd.Index), var._data.array # TODO: check identity instead of equality? assert pd_index.equals(var._data.array), (pd_index, var) if isinstance(index, PandasMultiIndex): pd_index = index.index for name in index.index.names: assert name in possible_coord_variables, (pd_index, index_vars) var = possible_coord_variables[name] assert (index.dim,) == var.dims, (pd_index, var) assert index.level_coords_dtype[name] == var.dtype, ( index.level_coords_dtype[name], var.dtype, ) assert isinstance(var._data.array, pd.MultiIndex), var._data.array assert pd_index.equals(var._data.array), (pd_index, var) # check all all levels are in `indexes` assert name in indexes, (name, set(indexes)) # index identity is used to find unique indexes in `indexes` assert index is indexes[name], (pd_index, indexes[name].index) if check_default: defaults = default_indexes(possible_coord_variables, dims) assert indexes.keys() == defaults.keys(), (set(indexes), set(defaults)) assert all(v.equals(defaults[k]) for k, v in indexes.items()), ( indexes, defaults, ) def _assert_variable_invariants(var: Variable, name: Hashable = None): if name is None: name_or_empty: tuple = () else: name_or_empty = (name,) assert isinstance(var._dims, tuple), name_or_empty + (var._dims,) assert len(var._dims) == len(var._data.shape), name_or_empty + ( var._dims, var._data.shape, ) assert isinstance(var._encoding, type(None) | dict), name_or_empty + ( var._encoding, ) assert isinstance(var._attrs, type(None) | dict), name_or_empty + (var._attrs,) def _assert_dataarray_invariants(da: DataArray, check_default_indexes: bool): assert isinstance(da._variable, Variable), da._variable _assert_variable_invariants(da._variable) assert isinstance(da._coords, dict), da._coords assert all(isinstance(v, Variable) for v in da._coords.values()), da._coords assert all(set(v.dims) <= set(da.dims) for v in da._coords.values()), ( da.dims, {k: v.dims for k, v in da._coords.items()}, ) assert all( isinstance(v, IndexVariable) for (k, v) in da._coords.items() if v.dims == (k,) ), {k: type(v) for k, v in da._coords.items()} for k, v in da._coords.items(): _assert_variable_invariants(v, k) if da._indexes is not None: _assert_indexes_invariants_checks( da._indexes, da._coords, da.dims, check_default=check_default_indexes ) def _assert_dataset_invariants(ds: Dataset, check_default_indexes: bool): assert isinstance(ds._variables, dict), type(ds._variables) assert all(isinstance(v, Variable) for v in ds._variables.values()), ds._variables for k, v in ds._variables.items(): _assert_variable_invariants(v, k) assert isinstance(ds._coord_names, set), ds._coord_names assert ds._coord_names <= ds._variables.keys(), ( ds._coord_names, set(ds._variables), ) assert type(ds._dims) is dict, ds._dims assert all(isinstance(v, int) for v in ds._dims.values()), ds._dims var_dims: set[Hashable] = set() for v in ds._variables.values(): var_dims.update(v.dims) assert ds._dims.keys() == var_dims, (set(ds._dims), var_dims) assert all( ds._dims[k] == v.sizes[k] for v in ds._variables.values() for k in v.sizes ), (ds._dims, {k: v.sizes for k, v in ds._variables.items()}) if check_default_indexes: assert all( isinstance(v, IndexVariable) for (k, v) in ds._variables.items() if v.dims == (k,) ), {k: type(v) for k, v in ds._variables.items() if v.dims == (k,)} if ds._indexes is not None: _assert_indexes_invariants_checks( ds._indexes, ds._variables, ds._dims, check_default=check_default_indexes ) assert isinstance(ds._encoding, type(None) | dict) assert isinstance(ds._attrs, type(None) | dict) def _assert_internal_invariants( xarray_obj: DataArray | Dataset | Variable, check_default_indexes: bool ): """Validate that an xarray object satisfies its own internal invariants. This exists for the benefit of xarray's own test suite, but may be useful in external projects if they (ill-advisedly) create objects using xarray's private APIs. """ if isinstance(xarray_obj, Variable): _assert_variable_invariants(xarray_obj) elif isinstance(xarray_obj, DataArray): _assert_dataarray_invariants( xarray_obj, check_default_indexes=check_default_indexes ) elif isinstance(xarray_obj, Dataset): _assert_dataset_invariants( xarray_obj, check_default_indexes=check_default_indexes ) elif isinstance(xarray_obj, Coordinates): _assert_dataset_invariants( xarray_obj.to_dataset(), check_default_indexes=check_default_indexes ) else: raise TypeError( f"{type(xarray_obj)} is not a supported type for xarray invariant checks" )