from __future__ import annotations import gzip import io import os from collections.abc import Iterable from typing import TYPE_CHECKING, Any import numpy as np from xarray.backends.common import ( BACKEND_ENTRYPOINTS, BackendArray, BackendEntrypoint, WritableCFDataStore, _normalize_path, ) from xarray.backends.file_manager import CachingFileManager, DummyFileManager from xarray.backends.locks import ensure_lock, get_write_lock from xarray.backends.netcdf3 import ( encode_nc3_attr_value, encode_nc3_variable, is_valid_nc3_name, ) from xarray.backends.store import StoreBackendEntrypoint from xarray.core import indexing from xarray.core.utils import ( Frozen, FrozenDict, close_on_error, module_available, try_read_magic_number_from_file_or_path, ) from xarray.core.variable import Variable if TYPE_CHECKING: from xarray.backends.common import AbstractDataStore from xarray.core.dataset import Dataset from xarray.core.types import ReadBuffer HAS_NUMPY_2_0 = module_available("numpy", minversion="2.0.0.dev0") def _decode_string(s): if isinstance(s, bytes): return s.decode("utf-8", "replace") return s def _decode_attrs(d): # don't decode _FillValue from bytes -> unicode, because we want to ensure # that its type matches the data exactly return {k: v if k == "_FillValue" else _decode_string(v) for (k, v) in d.items()} class ScipyArrayWrapper(BackendArray): def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_variable().data self.shape = array.shape self.dtype = np.dtype(array.dtype.kind + str(array.dtype.itemsize)) def get_variable(self, needs_lock=True): ds = self.datastore._manager.acquire(needs_lock) return ds.variables[self.variable_name] def _getitem(self, key): with self.datastore.lock: data = self.get_variable(needs_lock=False).data return data[key] def __getitem__(self, key): data = indexing.explicit_indexing_adapter( key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem ) # Copy data if the source file is mmapped. This makes things consistent # with the netCDF4 library by ensuring we can safely read arrays even # after closing associated files. copy = self.datastore.ds.use_mmap # adapt handling of copy-kwarg to numpy 2.0 # see https://github.com/numpy/numpy/issues/25916 # and https://github.com/numpy/numpy/pull/25922 copy = None if HAS_NUMPY_2_0 and copy is False else copy return np.array(data, dtype=self.dtype, copy=copy) def __setitem__(self, key, value): with self.datastore.lock: data = self.get_variable(needs_lock=False) try: data[key] = value except TypeError: if key is Ellipsis: # workaround for GH: scipy/scipy#6880 data[:] = value else: raise def _open_scipy_netcdf(filename, mode, mmap, version): import scipy.io # if the string ends with .gz, then gunzip and open as netcdf file if isinstance(filename, str) and filename.endswith(".gz"): try: return scipy.io.netcdf_file( gzip.open(filename), mode=mode, mmap=mmap, version=version ) except TypeError as e: # TODO: gzipped loading only works with NetCDF3 files. errmsg = e.args[0] if "is not a valid NetCDF 3 file" in errmsg: raise ValueError( "gzipped file loading only supports NetCDF 3 files." ) from e else: raise if isinstance(filename, bytes) and filename.startswith(b"CDF"): # it's a NetCDF3 bytestring filename = io.BytesIO(filename) try: return scipy.io.netcdf_file(filename, mode=mode, mmap=mmap, version=version) except TypeError as e: # netcdf3 message is obscure in this case errmsg = e.args[0] if "is not a valid NetCDF 3 file" in errmsg: msg = """ If this is a NetCDF4 file, you may need to install the netcdf4 library, e.g., $ pip install netcdf4 """ errmsg += msg raise TypeError(errmsg) from e else: raise class ScipyDataStore(WritableCFDataStore): """Store for reading and writing data via scipy.io.netcdf. This store has the advantage of being able to be initialized with a StringIO object, allow for serialization without writing to disk. It only supports the NetCDF3 file-format. """ def __init__( self, filename_or_obj, mode="r", format=None, group=None, mmap=None, lock=None ): if group is not None: raise ValueError("cannot save to a group with the scipy.io.netcdf backend") if format is None or format == "NETCDF3_64BIT": version = 2 elif format == "NETCDF3_CLASSIC": version = 1 else: raise ValueError(f"invalid format for scipy.io.netcdf backend: {format!r}") if lock is None and mode != "r" and isinstance(filename_or_obj, str): lock = get_write_lock(filename_or_obj) self.lock = ensure_lock(lock) if isinstance(filename_or_obj, str): manager = CachingFileManager( _open_scipy_netcdf, filename_or_obj, mode=mode, lock=lock, kwargs=dict(mmap=mmap, version=version), ) else: scipy_dataset = _open_scipy_netcdf( filename_or_obj, mode=mode, mmap=mmap, version=version ) manager = DummyFileManager(scipy_dataset) self._manager = manager @property def ds(self): return self._manager.acquire() def open_store_variable(self, name, var): return Variable( var.dimensions, ScipyArrayWrapper(name, self), _decode_attrs(var._attributes), ) def get_variables(self): return FrozenDict( (k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items() ) def get_attrs(self): return Frozen(_decode_attrs(self.ds._attributes)) def get_dimensions(self): return Frozen(self.ds.dimensions) def get_encoding(self): return { "unlimited_dims": {k for k, v in self.ds.dimensions.items() if v is None} } def set_dimension(self, name, length, is_unlimited=False): if name in self.ds.dimensions: raise ValueError( f"{type(self).__name__} does not support modifying dimensions" ) dim_length = length if not is_unlimited else None self.ds.createDimension(name, dim_length) def _validate_attr_key(self, key): if not is_valid_nc3_name(key): raise ValueError("Not a valid attribute name") def set_attribute(self, key, value): self._validate_attr_key(key) value = encode_nc3_attr_value(value) setattr(self.ds, key, value) def encode_variable(self, variable): variable = encode_nc3_variable(variable) return variable def prepare_variable( self, name, variable, check_encoding=False, unlimited_dims=None ): if ( check_encoding and variable.encoding and variable.encoding != {"_FillValue": None} ): raise ValueError( f"unexpected encoding for scipy backend: {list(variable.encoding)}" ) data = variable.data # nb. this still creates a numpy array in all memory, even though we # don't write the data yet; scipy.io.netcdf does not not support # incremental writes. if name not in self.ds.variables: self.ds.createVariable(name, data.dtype, variable.dims) scipy_var = self.ds.variables[name] for k, v in variable.attrs.items(): self._validate_attr_key(k) setattr(scipy_var, k, v) target = ScipyArrayWrapper(name, self) return target, data def sync(self): self.ds.sync() def close(self): self._manager.close() class ScipyBackendEntrypoint(BackendEntrypoint): """ Backend for netCDF files based on the scipy package. It can open ".nc", ".nc4", ".cdf" and ".gz" files but will only be selected as the default if the "netcdf4" and "h5netcdf" engines are not available. It has the advantage that is is a lightweight engine that has no system requirements (unlike netcdf4 and h5netcdf). Additionally it can open gizp compressed (".gz") files. For more information about the underlying library, visit: https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.html See Also -------- backends.ScipyDataStore backends.NetCDF4BackendEntrypoint backends.H5netcdfBackendEntrypoint """ description = "Open netCDF files (.nc, .nc4, .cdf and .gz) using scipy in Xarray" url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.ScipyBackendEntrypoint.html" def guess_can_open( self, filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore, ) -> bool: magic_number = try_read_magic_number_from_file_or_path(filename_or_obj) if magic_number is not None and magic_number.startswith(b"\x1f\x8b"): with gzip.open(filename_or_obj) as f: # type: ignore[arg-type] magic_number = try_read_magic_number_from_file_or_path(f) if magic_number is not None: return magic_number.startswith(b"CDF") if isinstance(filename_or_obj, str | os.PathLike): _, ext = os.path.splitext(filename_or_obj) return ext in {".nc", ".nc4", ".cdf", ".gz"} return False def open_dataset( self, filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore, *, mask_and_scale=True, decode_times=True, concat_characters=True, decode_coords=True, drop_variables: str | Iterable[str] | None = None, use_cftime=None, decode_timedelta=None, mode="r", format=None, group=None, mmap=None, lock=None, ) -> Dataset: filename_or_obj = _normalize_path(filename_or_obj) store = ScipyDataStore( filename_or_obj, mode=mode, format=format, group=group, mmap=mmap, lock=lock ) store_entrypoint = StoreBackendEntrypoint() with close_on_error(store): ds = store_entrypoint.open_dataset( store, mask_and_scale=mask_and_scale, decode_times=decode_times, concat_characters=concat_characters, decode_coords=decode_coords, drop_variables=drop_variables, use_cftime=use_cftime, decode_timedelta=decode_timedelta, ) return ds BACKEND_ENTRYPOINTS["scipy"] = ("scipy", ScipyBackendEntrypoint)