from __future__ import annotations import itertools import warnings from collections import defaultdict from collections.abc import Hashable, Iterable, Mapping, MutableMapping from typing import TYPE_CHECKING, Any, Literal, TypeVar, Union import numpy as np from xarray.coders import CFDatetimeCoder, CFTimedeltaCoder from xarray.coding import strings, variables from xarray.coding.variables import SerializationWarning, pop_to from xarray.core import indexing from xarray.core.common import ( _contains_datetime_like_objects, contains_cftime_datetimes, ) from xarray.core.utils import emit_user_level_warning from xarray.core.variable import IndexVariable, Variable from xarray.namedarray.utils import is_duck_dask_array CF_RELATED_DATA = ( "bounds", "grid_mapping", "climatology", "geometry", "node_coordinates", "node_count", "part_node_count", "interior_ring", "cell_measures", "formula_terms", ) CF_RELATED_DATA_NEEDS_PARSING = ( "grid_mapping", "cell_measures", "formula_terms", ) if TYPE_CHECKING: from xarray.backends.common import AbstractDataStore from xarray.core.dataset import Dataset T_VarTuple = tuple[tuple[Hashable, ...], Any, dict, dict] T_Name = Union[Hashable, None] T_Variables = Mapping[Any, Variable] T_Attrs = MutableMapping[Any, Any] T_DropVariables = Union[str, Iterable[Hashable], None] T_DatasetOrAbstractstore = Union[Dataset, AbstractDataStore] def ensure_not_multiindex(var: Variable, name: T_Name = None) -> None: # only the pandas multi-index dimension coordinate cannot be serialized (tuple values) if isinstance(var._data, indexing.PandasMultiIndexingAdapter): if name is None and isinstance(var, IndexVariable): name = var.name if var.dims == (name,): raise NotImplementedError( f"variable {name!r} is a MultiIndex, which cannot yet be " "serialized. Instead, either use reset_index() " "to convert MultiIndex levels into coordinate variables instead " "or use https://cf-xarray.readthedocs.io/en/latest/coding.html." ) def encode_cf_variable( var: Variable, needs_copy: bool = True, name: T_Name = None ) -> Variable: """ Converts a Variable into a Variable which follows some of the CF conventions: - Nans are masked using _FillValue (or the deprecated missing_value) - Rescaling via: scale_factor and add_offset - datetimes are converted to the CF 'units since time' format - dtype encodings are enforced. Parameters ---------- var : Variable A variable holding un-encoded data. Returns ------- out : Variable A variable which has been encoded as described above. """ ensure_not_multiindex(var, name=name) for coder in [ CFDatetimeCoder(), CFTimedeltaCoder(), variables.CFScaleOffsetCoder(), variables.CFMaskCoder(), variables.NativeEnumCoder(), variables.NonStringCoder(), variables.DefaultFillvalueCoder(), variables.BooleanCoder(), ]: var = coder.encode(var, name=name) for attr_name in CF_RELATED_DATA: pop_to(var.encoding, var.attrs, attr_name) return var def decode_cf_variable( name: Hashable, var: Variable, concat_characters: bool = True, mask_and_scale: bool = True, decode_times: bool | CFDatetimeCoder = True, decode_endianness: bool = True, stack_char_dim: bool = True, use_cftime: bool | None = None, decode_timedelta: bool | CFTimedeltaCoder | None = None, ) -> Variable: """ Decodes a variable which may hold CF encoded information. This includes variables that have been masked and scaled, which hold CF style time variables (this is almost always the case if the dataset has been serialized) and which have strings encoded as character arrays. Parameters ---------- name : str Name of the variable. Used for better error messages. var : Variable A variable holding potentially CF encoded information. concat_characters : bool Should character arrays be concatenated to strings, for example: ["h", "e", "l", "l", "o"] -> "hello" mask_and_scale : bool Lazily scale (using scale_factor and add_offset) and mask (using _FillValue). If the _Unsigned attribute is present treat integer arrays as unsigned. decode_times : bool or CFDatetimeCoder Decode cf times ("hours since 2000-01-01") to np.datetime64. decode_endianness : bool Decode arrays from non-native to native endianness. stack_char_dim : bool Whether to stack characters into bytes along the last dimension of this array. Passed as an argument because we need to look at the full dataset to figure out if this is appropriate. use_cftime : bool, optional Only relevant if encoded dates come from a standard calendar (e.g. "gregorian", "proleptic_gregorian", "standard", or not specified). If None (default), attempt to decode times to ``np.datetime64[ns]`` objects; if this is not possible, decode times to ``cftime.datetime`` objects. If True, always decode times to ``cftime.datetime`` objects, regardless of whether or not they can be represented using ``np.datetime64[ns]`` objects. If False, always decode times to ``np.datetime64[ns]`` objects; if this is not possible raise an error. .. deprecated:: 2025.01.1 Please pass a :py:class:`coders.CFDatetimeCoder` instance initialized with ``use_cftime`` to the ``decode_times`` kwarg instead. decode_timedelta : None, bool, or CFTimedeltaCoder Decode cf timedeltas ("hours") to np.timedelta64. Returns ------- out : Variable A variable holding the decoded equivalent of var. """ # Ensure datetime-like Variables are passed through unmodified (GH 6453) if _contains_datetime_like_objects(var): return var original_dtype = var.dtype decode_timedelta_was_none = decode_timedelta is None if decode_timedelta is None: if isinstance(decode_times, CFDatetimeCoder): decode_timedelta = CFTimedeltaCoder(time_unit=decode_times.time_unit) else: decode_timedelta = True if decode_times else False if concat_characters: if stack_char_dim: var = strings.CharacterArrayCoder().decode(var, name=name) var = strings.EncodedStringCoder().decode(var) if original_dtype.kind == "O": var = variables.ObjectVLenStringCoder().decode(var) original_dtype = var.dtype if original_dtype.kind == "T": var = variables.Numpy2StringDTypeCoder().decode(var) if mask_and_scale: for coder in [ variables.CFMaskCoder(), variables.CFScaleOffsetCoder(), ]: var = coder.decode(var, name=name) if decode_timedelta: if not isinstance(decode_timedelta, CFTimedeltaCoder): decode_timedelta = CFTimedeltaCoder() decode_timedelta._emit_decode_timedelta_future_warning = ( decode_timedelta_was_none ) var = decode_timedelta.decode(var, name=name) if decode_times: # remove checks after end of deprecation cycle if not isinstance(decode_times, CFDatetimeCoder): if use_cftime is not None: emit_user_level_warning( "Usage of 'use_cftime' as a kwarg is deprecated. " "Please pass a 'CFDatetimeCoder' instance initialized " "with 'use_cftime' to the 'decode_times' kwarg instead.\n" "Example usage:\n" " time_coder = xr.coders.CFDatetimeCoder(use_cftime=True)\n" " ds = xr.open_dataset(decode_times=time_coder)\n", DeprecationWarning, ) decode_times = CFDatetimeCoder(use_cftime=use_cftime) else: if use_cftime is not None: raise TypeError( "Usage of 'use_cftime' as a kwarg is not allowed " "if a 'CFDatetimeCoder' instance is passed to " "'decode_times'. Please set 'use_cftime' " "when initializing 'CFDatetimeCoder' instead.\n" "Example usage:\n" " time_coder = xr.coders.CFDatetimeCoder(use_cftime=True)\n" " ds = xr.open_dataset(decode_times=time_coder)\n", ) var = decode_times.decode(var, name=name) if decode_endianness and not var.dtype.isnative: var = variables.EndianCoder().decode(var) original_dtype = var.dtype var = variables.BooleanCoder().decode(var) dimensions, data, attributes, encoding = variables.unpack_for_decoding(var) encoding.setdefault("dtype", original_dtype) if not is_duck_dask_array(data): data = indexing.LazilyIndexedArray(data) return Variable(dimensions, data, attributes, encoding=encoding, fastpath=True) def _update_bounds_attributes(variables: T_Variables) -> None: """Adds time attributes to time bounds variables. Variables handling time bounds ("Cell boundaries" in the CF conventions) do not necessarily carry the necessary attributes to be decoded. This copies the attributes from the time variable to the associated boundaries. See Also: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/ cf-conventions.html#cell-boundaries https://github.com/pydata/xarray/issues/2565 """ # For all time variables with bounds for v in variables.values(): attrs = v.attrs units = attrs.get("units") has_date_units = isinstance(units, str) and "since" in units if has_date_units and "bounds" in attrs: if attrs["bounds"] in variables: bounds_attrs = variables[attrs["bounds"]].attrs bounds_attrs.setdefault("units", attrs["units"]) if "calendar" in attrs: bounds_attrs.setdefault("calendar", attrs["calendar"]) def _update_bounds_encoding(variables: T_Variables) -> None: """Adds time encoding to time bounds variables. Variables handling time bounds ("Cell boundaries" in the CF conventions) do not necessarily carry the necessary attributes to be decoded. This copies the encoding from the time variable to the associated bounds variable so that we write CF-compliant files. See Also: http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/ cf-conventions.html#cell-boundaries https://github.com/pydata/xarray/issues/2565 """ # For all time variables with bounds for name, v in variables.items(): attrs = v.attrs encoding = v.encoding has_date_units = "units" in encoding and "since" in encoding["units"] is_datetime_type = np.issubdtype( v.dtype, np.datetime64 ) or contains_cftime_datetimes(v) if ( is_datetime_type and not has_date_units and "bounds" in attrs and attrs["bounds"] in variables ): emit_user_level_warning( f"Variable {name} has datetime type and a " f"bounds variable but {name}.encoding does not have " f"units specified. The units encodings for {name} " f"and {attrs['bounds']} will be determined independently " "and may not be equal, counter to CF-conventions. " "If this is a concern, specify a units encoding for " f"{name} before writing to a file.", ) if has_date_units and "bounds" in attrs: if attrs["bounds"] in variables: bounds_encoding = variables[attrs["bounds"]].encoding bounds_encoding.setdefault("units", encoding["units"]) if "calendar" in encoding: bounds_encoding.setdefault("calendar", encoding["calendar"]) T = TypeVar("T") U = TypeVar("U") def _item_or_default(obj: Mapping[Any, T | U] | T, key: Hashable, default: T) -> T | U: """ Return item by key if obj is mapping and key is present, else return default value. """ return obj.get(key, default) if isinstance(obj, Mapping) else obj def decode_cf_variables( variables: T_Variables, attributes: T_Attrs, concat_characters: bool | Mapping[str, bool] = True, mask_and_scale: bool | Mapping[str, bool] = True, decode_times: bool | CFDatetimeCoder | Mapping[str, bool | CFDatetimeCoder] = True, decode_coords: bool | Literal["coordinates", "all"] = True, drop_variables: T_DropVariables = None, use_cftime: bool | Mapping[str, bool] | None = None, decode_timedelta: bool | CFTimedeltaCoder | Mapping[str, bool | CFTimedeltaCoder] | None = None, ) -> tuple[T_Variables, T_Attrs, set[Hashable]]: """ Decode several CF encoded variables. See: decode_cf_variable """ # Only emit one instance of the decode_timedelta default change # FutureWarning. This can be removed once this change is made. warnings.filterwarnings("once", "decode_timedelta", FutureWarning) dimensions_used_by = defaultdict(list) for v in variables.values(): for d in v.dims: dimensions_used_by[d].append(v) def stackable(dim: Hashable) -> bool: # figure out if a dimension can be concatenated over if dim in variables: return False for v in dimensions_used_by[dim]: if v.dtype.kind != "S" or dim != v.dims[-1]: return False return True coord_names = set() if isinstance(drop_variables, str): drop_variables = [drop_variables] elif drop_variables is None: drop_variables = [] drop_variables = set(drop_variables) # Time bounds coordinates might miss the decoding attributes if decode_times: _update_bounds_attributes(variables) new_vars = {} for k, v in variables.items(): if k in drop_variables: continue stack_char_dim = ( _item_or_default(concat_characters, k, True) and v.dtype == "S1" and v.ndim > 0 and stackable(v.dims[-1]) ) try: new_vars[k] = decode_cf_variable( k, v, concat_characters=_item_or_default(concat_characters, k, True), mask_and_scale=_item_or_default(mask_and_scale, k, True), decode_times=_item_or_default(decode_times, k, True), stack_char_dim=stack_char_dim, use_cftime=_item_or_default(use_cftime, k, None), decode_timedelta=_item_or_default(decode_timedelta, k, None), ) except Exception as e: raise type(e)(f"Failed to decode variable {k!r}: {e}") from e if decode_coords in [True, "coordinates", "all"]: var_attrs = new_vars[k].attrs if "coordinates" in var_attrs: var_coord_names = [ c for c in var_attrs["coordinates"].split() if c in variables ] # propagate as is new_vars[k].encoding["coordinates"] = var_attrs["coordinates"] del var_attrs["coordinates"] # but only use as coordinate if existing if var_coord_names: coord_names.update(var_coord_names) if decode_coords == "all": for attr_name in CF_RELATED_DATA: if attr_name in var_attrs: # fixes stray colon attr_val = var_attrs[attr_name].replace(" :", ":") var_names = attr_val.split() # if grid_mapping is a single string, do not enter here if ( attr_name in CF_RELATED_DATA_NEEDS_PARSING and len(var_names) > 1 ): # map the keys to list of strings # "A: b c d E: f g" returns # {"A": ["b", "c", "d"], "E": ["f", "g"]} roles_and_names = defaultdict(list) key = None for vname in var_names: if ":" in vname: key = vname.strip(":") else: if key is None: raise ValueError( f"First element {vname!r} of [{attr_val!r}] misses ':', " f"cannot decode {attr_name!r}." ) roles_and_names[key].append(vname) # for grid_mapping keys are var_names if attr_name == "grid_mapping": var_names = list(roles_and_names.keys()) else: # for cell_measures and formula_terms values are var names var_names = list(itertools.chain(*roles_and_names.values())) # consistency check (one element per key) if len(var_names) != len(roles_and_names.keys()): emit_user_level_warning( f"Attribute {attr_name!r} has malformed content [{attr_val!r}], " f"decoding {var_names!r} to coordinates." ) if all(var_name in variables for var_name in var_names): new_vars[k].encoding[attr_name] = attr_val coord_names.update(var_names) else: referenced_vars_not_in_variables = [ proj_name for proj_name in var_names if proj_name not in variables ] emit_user_level_warning( f"Variable(s) referenced in {attr_name} not in variables: {referenced_vars_not_in_variables}", ) del var_attrs[attr_name] if decode_coords and isinstance(attributes.get("coordinates", None), str): attributes = dict(attributes) crds = attributes.pop("coordinates") coord_names.update(crds.split()) return new_vars, attributes, coord_names def decode_cf( obj: T_DatasetOrAbstractstore, concat_characters: bool = True, mask_and_scale: bool = True, decode_times: bool | CFDatetimeCoder | Mapping[str, bool | CFDatetimeCoder] = True, decode_coords: bool | Literal["coordinates", "all"] = True, drop_variables: T_DropVariables = None, use_cftime: bool | None = None, decode_timedelta: bool | CFTimedeltaCoder | Mapping[str, bool | CFTimedeltaCoder] | None = None, ) -> Dataset: """Decode the given Dataset or Datastore according to CF conventions into a new Dataset. Parameters ---------- obj : Dataset or DataStore Object to decode. concat_characters : bool, optional Should character arrays be concatenated to strings, for example: ["h", "e", "l", "l", "o"] -> "hello" mask_and_scale : bool, optional Lazily scale (using scale_factor and add_offset) and mask (using _FillValue). decode_times : bool | CFDatetimeCoder | Mapping[str, bool | CFDatetimeCoder], optional Decode cf times (e.g., integers since "hours since 2000-01-01") to np.datetime64. decode_coords : bool or {"coordinates", "all"}, optional Controls which variables are set as coordinate variables: - "coordinates" or True: Set variables referred to in the ``'coordinates'`` attribute of the datasets or individual variables as coordinate variables. - "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and other attributes as coordinate variables. drop_variables : str or iterable, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. use_cftime : bool, optional Only relevant if encoded dates come from a standard calendar (e.g. "gregorian", "proleptic_gregorian", "standard", or not specified). If None (default), attempt to decode times to ``np.datetime64[ns]`` objects; if this is not possible, decode times to ``cftime.datetime`` objects. If True, always decode times to ``cftime.datetime`` objects, regardless of whether or not they can be represented using ``np.datetime64[ns]`` objects. If False, always decode times to ``np.datetime64[ns]`` objects; if this is not possible raise an error. .. deprecated:: 2025.01.1 Please pass a :py:class:`coders.CFDatetimeCoder` instance initialized with ``use_cftime`` to the ``decode_times`` kwarg instead. decode_timedelta : bool | CFTimedeltaCoder | Mapping[str, bool | CFTimedeltaCoder], optional If True or :py:class:`CFTimedeltaCoder`, decode variables and coordinates with time units in {"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"} into timedelta objects. If False, leave them encoded as numbers. If None (default), assume the same behavior as decode_times. The resolution of the decoded timedeltas can be configured with the ``time_unit`` argument in the :py:class:`CFTimedeltaCoder` passed. Returns ------- decoded : Dataset """ from xarray.backends.common import AbstractDataStore from xarray.core.dataset import Dataset vars: T_Variables attrs: T_Attrs if isinstance(obj, Dataset): vars = obj._variables attrs = obj.attrs extra_coords = set(obj.coords) close = obj._close encoding = obj.encoding elif isinstance(obj, AbstractDataStore): vars, attrs = obj.load() extra_coords = set() close = obj.close encoding = obj.get_encoding() else: raise TypeError("can only decode Dataset or DataStore objects") vars, attrs, coord_names = decode_cf_variables( vars, attrs, concat_characters, mask_and_scale, decode_times, decode_coords, drop_variables=drop_variables, use_cftime=use_cftime, decode_timedelta=decode_timedelta, ) ds = Dataset(vars, attrs=attrs) ds = ds.set_coords(coord_names.union(extra_coords).intersection(vars)) ds.set_close(close) ds.encoding = encoding return ds def cf_decoder( variables: T_Variables, attributes: T_Attrs, concat_characters: bool = True, mask_and_scale: bool = True, decode_times: bool | CFDatetimeCoder | Mapping[str, bool | CFDatetimeCoder] = True, ) -> tuple[T_Variables, T_Attrs]: """ Decode a set of CF encoded variables and attributes. Parameters ---------- variables : dict A dictionary mapping from variable name to xarray.Variable attributes : dict A dictionary mapping from attribute name to value concat_characters : bool Should character arrays be concatenated to strings, for example: ["h", "e", "l", "l", "o"] -> "hello" mask_and_scale : bool Lazily scale (using scale_factor and add_offset) and mask (using _FillValue). decode_times : bool | CFDatetimeCoder | Mapping[str, bool | CFDatetimeCoder] Decode cf times ("hours since 2000-01-01") to np.datetime64. Returns ------- decoded_variables : dict A dictionary mapping from variable name to xarray.Variable objects. decoded_attributes : dict A dictionary mapping from attribute name to values. See Also -------- decode_cf_variable """ variables, attributes, _ = decode_cf_variables( variables, attributes, concat_characters, mask_and_scale, decode_times, ) return variables, attributes def _encode_coordinates( variables: T_Variables, attributes: T_Attrs, non_dim_coord_names ): # calculate global and variable specific coordinates non_dim_coord_names = set(non_dim_coord_names) for name in list(non_dim_coord_names): if isinstance(name, str) and " " in name: emit_user_level_warning( f"coordinate {name!r} has a space in its name, which means it " "cannot be marked as a coordinate on disk and will be " "saved as a data variable instead", category=SerializationWarning, ) non_dim_coord_names.discard(name) global_coordinates = non_dim_coord_names.copy() variable_coordinates = defaultdict(set) not_technically_coordinates = set() for coord_name in non_dim_coord_names: target_dims = variables[coord_name].dims for k, v in variables.items(): if ( k not in non_dim_coord_names and k not in v.dims and set(target_dims) <= set(v.dims) ): variable_coordinates[k].add(coord_name) if any( coord_name in v.encoding.get(attr_name, tuple()) for attr_name in CF_RELATED_DATA ): not_technically_coordinates.add(coord_name) global_coordinates.discard(coord_name) variables = {k: v.copy(deep=False) for k, v in variables.items()} # keep track of variable names written to file under the "coordinates" attributes written_coords = set() for name, var in variables.items(): encoding = var.encoding attrs = var.attrs if "coordinates" in attrs and "coordinates" in encoding: raise ValueError( f"'coordinates' found in both attrs and encoding for variable {name!r}." ) # if coordinates set to None, don't write coordinates attribute if ("coordinates" in attrs and attrs.get("coordinates") is None) or ( "coordinates" in encoding and encoding.get("coordinates") is None ): # make sure "coordinates" is removed from attrs/encoding attrs.pop("coordinates", None) encoding.pop("coordinates", None) continue # this will copy coordinates from encoding to attrs if "coordinates" in attrs # after the next line, "coordinates" is never in encoding # we get support for attrs["coordinates"] for free. coords_str = pop_to(encoding, attrs, "coordinates") or attrs.get("coordinates") if not coords_str and variable_coordinates[name]: coordinates_text = " ".join( str(coord_name) for coord_name in sorted(variable_coordinates[name]) if coord_name not in not_technically_coordinates ) if coordinates_text: attrs["coordinates"] = coordinates_text if "coordinates" in attrs: written_coords.update(attrs["coordinates"].split()) # These coordinates are not associated with any particular variables, so we # save them under a global 'coordinates' attribute so xarray can roundtrip # the dataset faithfully. Because this serialization goes beyond CF # conventions, only do it if necessary. # Reference discussion: # https://cfconventions.org/mailing-list-archive/Data/7400.html global_coordinates.difference_update(written_coords) if global_coordinates: attributes = dict(attributes) if "coordinates" in attributes: emit_user_level_warning( f"cannot serialize global coordinates {global_coordinates!r} because the global " f"attribute 'coordinates' already exists. This may prevent faithful roundtripping" f"of xarray datasets", category=SerializationWarning, ) else: attributes["coordinates"] = " ".join(sorted(map(str, global_coordinates))) return variables, attributes def encode_dataset_coordinates(dataset: Dataset): """Encode coordinates on the given dataset object into variable specific and global attributes. When possible, this is done according to CF conventions. Parameters ---------- dataset : Dataset Object to encode. Returns ------- variables : dict attrs : dict """ non_dim_coord_names = set(dataset.coords) - set(dataset.dims) return _encode_coordinates( dataset._variables, dataset.attrs, non_dim_coord_names=non_dim_coord_names ) def cf_encoder(variables: T_Variables, attributes: T_Attrs): """ Encode a set of CF encoded variables and attributes. Takes a dicts of variables and attributes and encodes them to conform to CF conventions as much as possible. This includes masking, scaling, character array handling, and CF-time encoding. Parameters ---------- variables : dict A dictionary mapping from variable name to xarray.Variable attributes : dict A dictionary mapping from attribute name to value Returns ------- encoded_variables : dict A dictionary mapping from variable name to xarray.Variable, encoded_attributes : dict A dictionary mapping from attribute name to value See Also -------- decode_cf_variable, encode_cf_variable """ # add encoding for time bounds variables if present. _update_bounds_encoding(variables) new_vars = {k: encode_cf_variable(v, name=k) for k, v in variables.items()} # Remove attrs from bounds variables (issue #2921) for var in new_vars.values(): bounds = var.attrs.get("bounds") if bounds and bounds in new_vars: # see http://cfconventions.org/cf-conventions/cf-conventions.html#cell-boundaries for attr in [ "units", "standard_name", "axis", "positive", "calendar", "long_name", "leap_month", "leap_year", "month_lengths", ]: if attr in new_vars[bounds].attrs and attr in var.attrs: if new_vars[bounds].attrs[attr] == var.attrs[attr]: new_vars[bounds].attrs.pop(attr) return new_vars, attributes