""" This module provides Grouper objects that encapsulate the "factorization" process - conversion of value we are grouping by to integer codes (one per group). """ from __future__ import annotations import datetime from abc import ABC, abstractmethod from dataclasses import dataclass, field from itertools import pairwise from typing import TYPE_CHECKING, Any, Literal, cast import numpy as np import pandas as pd from numpy.typing import ArrayLike from xarray.coding.cftime_offsets import BaseCFTimeOffset, _new_to_legacy_freq from xarray.core import duck_array_ops from xarray.core.computation import apply_ufunc from xarray.core.coordinates import Coordinates, _coordinates_from_variable from xarray.core.dataarray import DataArray from xarray.core.duck_array_ops import isnull from xarray.core.groupby import T_Group, _DummyGroup from xarray.core.indexes import safe_cast_to_index from xarray.core.resample_cftime import CFTimeGrouper from xarray.core.types import ( Bins, DatetimeLike, GroupIndices, ResampleCompatible, Self, SideOptions, ) from xarray.core.variable import Variable from xarray.namedarray.pycompat import is_chunked_array __all__ = [ "BinGrouper", "EncodedGroups", "Grouper", "Resampler", "TimeResampler", "UniqueGrouper", ] RESAMPLE_DIM = "__resample_dim__" @dataclass(init=False) class EncodedGroups: """ Dataclass for storing intermediate values for GroupBy operation. Returned by the ``factorize`` method on Grouper objects. Attributes ---------- codes : DataArray Same shape as the DataArray to group by. Values consist of a unique integer code for each group. full_index : pd.Index Pandas Index for the group coordinate containing unique group labels. This can differ from ``unique_coord`` in the case of resampling and binning, where certain groups in the output need not be present in the input. group_indices : tuple of int or slice or list of int, optional List of indices of array elements belonging to each group. Inferred if not provided. unique_coord : Variable, optional Unique group values present in dataset. Inferred if not provided """ codes: DataArray full_index: pd.Index group_indices: GroupIndices unique_coord: Variable | _DummyGroup coords: Coordinates def __init__( self, codes: DataArray, full_index: pd.Index, group_indices: GroupIndices | None = None, unique_coord: Variable | _DummyGroup | None = None, coords: Coordinates | None = None, ): from xarray.core.groupby import _codes_to_group_indices assert isinstance(codes, DataArray) if codes.name is None: raise ValueError("Please set a name on the array you are grouping by.") self.codes = codes assert isinstance(full_index, pd.Index) self.full_index = full_index if group_indices is None: if not is_chunked_array(codes.data): self.group_indices = tuple( g for g in _codes_to_group_indices( codes.data.ravel(), len(full_index) ) if g ) else: # We will not use this when grouping by a chunked array self.group_indices = tuple() else: self.group_indices = group_indices if unique_coord is None: unique_values = full_index[np.unique(codes)] self.unique_coord = Variable( dims=codes.name, data=unique_values, attrs=codes.attrs ) else: self.unique_coord = unique_coord if coords is None: assert not isinstance(self.unique_coord, _DummyGroup) self.coords = _coordinates_from_variable(self.unique_coord) else: self.coords = coords class Grouper(ABC): """Abstract base class for Grouper objects that allow specializing GroupBy instructions.""" @abstractmethod def factorize(self, group: T_Group) -> EncodedGroups: """ Creates intermediates necessary for GroupBy. Parameters ---------- group : DataArray DataArray we are grouping by. Returns ------- EncodedGroups """ pass @abstractmethod def reset(self) -> Self: """ Creates a new version of this Grouper clearing any caches. """ pass class Resampler(Grouper): """ Abstract base class for Grouper objects that allow specializing resampling-type GroupBy instructions. Currently only used for TimeResampler, but could be used for SpaceResampler in the future. """ pass @dataclass class UniqueGrouper(Grouper): """ Grouper object for grouping by a categorical variable. Parameters ---------- labels: array-like, optional Group labels to aggregate on. This is required when grouping by a chunked array type (e.g. dask or cubed) since it is used to construct the coordinate on the output. Grouped operations will only be run on the specified group labels. Any group that is not present in ``labels`` will be ignored. """ _group_as_index: pd.Index | None = field(default=None, repr=False) labels: ArrayLike | None = field(default=None) @property def group_as_index(self) -> pd.Index: """Caches the group DataArray as a pandas Index.""" if self._group_as_index is None: if self.group.ndim == 1: self._group_as_index = self.group.to_index() else: self._group_as_index = pd.Index(np.array(self.group).ravel()) return self._group_as_index def reset(self) -> Self: return type(self)() def factorize(self, group: T_Group) -> EncodedGroups: self.group = group if is_chunked_array(group.data) and self.labels is None: raise ValueError( "When grouping by a dask array, `labels` must be passed using " "a UniqueGrouper object." ) if self.labels is not None: return self._factorize_given_labels(group) index = self.group_as_index is_unique_and_monotonic = isinstance(self.group, _DummyGroup) or ( index.is_unique and (index.is_monotonic_increasing or index.is_monotonic_decreasing) ) is_dimension = self.group.dims == (self.group.name,) can_squeeze = is_dimension and is_unique_and_monotonic if can_squeeze: return self._factorize_dummy() else: return self._factorize_unique() def _factorize_given_labels(self, group: T_Group) -> EncodedGroups: codes = apply_ufunc( _factorize_given_labels, group, kwargs={"labels": self.labels}, dask="parallelized", output_dtypes=[np.int64], keep_attrs=True, ) return EncodedGroups( codes=codes, full_index=pd.Index(self.labels), # type: ignore[arg-type] unique_coord=Variable( dims=codes.name, data=self.labels, attrs=self.group.attrs, ), ) def _factorize_unique(self) -> EncodedGroups: # look through group to find the unique values sort = not isinstance(self.group_as_index, pd.MultiIndex) unique_values, codes_ = unique_value_groups(self.group_as_index, sort=sort) if (codes_ == -1).all(): raise ValueError( "Failed to group data. Are you grouping by a variable that is all NaN?" ) codes = self.group.copy(data=codes_.reshape(self.group.shape), deep=False) unique_coord = Variable( dims=codes.name, data=unique_values, attrs=self.group.attrs ) full_index = pd.Index(unique_values) return EncodedGroups( codes=codes, full_index=full_index, unique_coord=unique_coord, coords=_coordinates_from_variable(unique_coord), ) def _factorize_dummy(self) -> EncodedGroups: size = self.group.size # no need to factorize # use slices to do views instead of fancy indexing # equivalent to: group_indices = group_indices.reshape(-1, 1) group_indices: GroupIndices = tuple(slice(i, i + 1) for i in range(size)) size_range = np.arange(size) full_index: pd.Index unique_coord: _DummyGroup | Variable if isinstance(self.group, _DummyGroup): codes = self.group.to_dataarray().copy(data=size_range) unique_coord = self.group full_index = pd.RangeIndex(self.group.size) coords = Coordinates() else: codes = self.group.copy(data=size_range, deep=False) unique_coord = self.group.variable.to_base_variable() full_index = self.group_as_index if isinstance(full_index, pd.MultiIndex): coords = Coordinates.from_pandas_multiindex( full_index, dim=self.group.name ) else: if TYPE_CHECKING: assert isinstance(unique_coord, Variable) coords = _coordinates_from_variable(unique_coord) return EncodedGroups( codes=codes, group_indices=group_indices, full_index=full_index, unique_coord=unique_coord, coords=coords, ) @dataclass class BinGrouper(Grouper): """ Grouper object for binning numeric data. Attributes ---------- bins : int, sequence of scalars, or IntervalIndex The criteria to bin by. * int : Defines the number of equal-width bins in the range of `x`. The range of `x` is extended by .1% on each side to include the minimum and maximum values of `x`. * sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of `x` is done. * IntervalIndex : Defines the exact bins to be used. Note that IntervalIndex for `bins` must be non-overlapping. right : bool, default True Indicates whether `bins` includes the rightmost edge or not. If ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]`` indicate (1,2], (2,3], (3,4]. This argument is ignored when `bins` is an IntervalIndex. labels : array or False, default None Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when `bins` is an IntervalIndex. If True, raises an error. When `ordered=False`, labels must be provided. retbins : bool, default False Whether to return the bins or not. Useful when bins is provided as a scalar. precision : int, default 3 The precision at which to store and display the bins labels. include_lowest : bool, default False Whether the first interval should be left-inclusive or not. duplicates : {"raise", "drop"}, default: "raise" If bin edges are not unique, raise ValueError or drop non-uniques. """ bins: Bins # The rest are copied from pandas right: bool = True labels: Any = None precision: int = 3 include_lowest: bool = False duplicates: Literal["raise", "drop"] = "raise" def reset(self) -> Self: return type(self)( bins=self.bins, right=self.right, labels=self.labels, precision=self.precision, include_lowest=self.include_lowest, duplicates=self.duplicates, ) def __post_init__(self) -> None: if duck_array_ops.isnull(self.bins).all(): raise ValueError("All bin edges are NaN.") def _cut(self, data): return pd.cut( np.asarray(data).ravel(), bins=self.bins, right=self.right, labels=self.labels, precision=self.precision, include_lowest=self.include_lowest, duplicates=self.duplicates, retbins=True, ) def _factorize_lazy(self, group: T_Group) -> DataArray: def _wrapper(data, **kwargs): binned, bins = self._cut(data) if isinstance(self.bins, int): # we are running eagerly, update self.bins with actual edges instead self.bins = bins return binned.codes.reshape(data.shape) return apply_ufunc(_wrapper, group, dask="parallelized", keep_attrs=True) def factorize(self, group: T_Group) -> EncodedGroups: if isinstance(group, _DummyGroup): group = DataArray(group.data, dims=group.dims, name=group.name) by_is_chunked = is_chunked_array(group.data) if isinstance(self.bins, int) and by_is_chunked: raise ValueError( f"Bin edges must be provided when grouping by chunked arrays. Received {self.bins=!r} instead" ) codes = self._factorize_lazy(group) if not by_is_chunked and (codes == -1).all(): raise ValueError( f"None of the data falls within bins with edges {self.bins!r}" ) new_dim_name = f"{group.name}_bins" codes.name = new_dim_name # This seems silly, but it lets us have Pandas handle the complexity # of `labels`, `precision`, and `include_lowest`, even when group is a chunked array dummy, _ = self._cut(np.array([0]).astype(group.dtype)) full_index = dummy.categories if not by_is_chunked: uniques = np.sort(pd.unique(codes.data.ravel())) unique_values = full_index[uniques[uniques != -1]] else: unique_values = full_index unique_coord = Variable( dims=new_dim_name, data=unique_values, attrs=group.attrs ) return EncodedGroups( codes=codes, full_index=full_index, unique_coord=unique_coord, coords=_coordinates_from_variable(unique_coord), ) @dataclass(repr=False) class TimeResampler(Resampler): """ Grouper object specialized to resampling the time coordinate. Attributes ---------- freq : str, datetime.timedelta, pandas.Timestamp, or pandas.DateOffset Frequency to resample to. See `Pandas frequency aliases `_ for a list of possible values. closed : {"left", "right"}, optional Side of each interval to treat as closed. label : {"left", "right"}, optional Side of each interval to use for labeling. origin : {'epoch', 'start', 'start_day', 'end', 'end_day'}, pandas.Timestamp, datetime.datetime, numpy.datetime64, or cftime.datetime, default 'start_day' The datetime on which to adjust the grouping. The timezone of origin must match the timezone of the index. If a datetime is not used, these values are also supported: - 'epoch': `origin` is 1970-01-01 - 'start': `origin` is the first value of the timeseries - 'start_day': `origin` is the first day at midnight of the timeseries - 'end': `origin` is the last value of the timeseries - 'end_day': `origin` is the ceiling midnight of the last day offset : pd.Timedelta, datetime.timedelta, or str, default is None An offset timedelta added to the origin. """ freq: ResampleCompatible closed: SideOptions | None = field(default=None) label: SideOptions | None = field(default=None) origin: str | DatetimeLike = field(default="start_day") offset: pd.Timedelta | datetime.timedelta | str | None = field(default=None) index_grouper: CFTimeGrouper | pd.Grouper = field(init=False, repr=False) group_as_index: pd.Index = field(init=False, repr=False) def reset(self) -> Self: return type(self)( freq=self.freq, closed=self.closed, label=self.label, origin=self.origin, offset=self.offset, ) def _init_properties(self, group: T_Group) -> None: from xarray import CFTimeIndex group_as_index = safe_cast_to_index(group) offset = self.offset if not group_as_index.is_monotonic_increasing: # TODO: sort instead of raising an error raise ValueError("Index must be monotonic for resampling") if isinstance(group_as_index, CFTimeIndex): from xarray.core.resample_cftime import CFTimeGrouper self.index_grouper = CFTimeGrouper( freq=self.freq, closed=self.closed, label=self.label, origin=self.origin, offset=offset, ) else: if isinstance(self.freq, BaseCFTimeOffset): raise ValueError( "'BaseCFTimeOffset' resample frequencies are only supported " "when resampling a 'CFTimeIndex'" ) self.index_grouper = pd.Grouper( # TODO remove once requiring pandas >= 2.2 freq=_new_to_legacy_freq(self.freq), closed=self.closed, label=self.label, origin=self.origin, offset=offset, ) self.group_as_index = group_as_index def _get_index_and_items(self) -> tuple[pd.Index, pd.Series, np.ndarray]: first_items, codes = self.first_items() full_index = first_items.index if first_items.isnull().any(): first_items = first_items.dropna() full_index = full_index.rename("__resample_dim__") return full_index, first_items, codes def first_items(self) -> tuple[pd.Series, np.ndarray]: from xarray.coding.cftimeindex import CFTimeIndex from xarray.core.resample_cftime import CFTimeGrouper if isinstance(self.index_grouper, CFTimeGrouper): return self.index_grouper.first_items( cast(CFTimeIndex, self.group_as_index) ) else: s = pd.Series(np.arange(self.group_as_index.size), self.group_as_index) grouped = s.groupby(self.index_grouper) first_items = grouped.first() counts = grouped.count() # This way we generate codes for the final output index: full_index. # So for _flox_reduce we avoid one reindex and copy by avoiding # _maybe_restore_empty_groups codes = np.repeat(np.arange(len(first_items)), counts) return first_items, codes def factorize(self, group: T_Group) -> EncodedGroups: self._init_properties(group) full_index, first_items, codes_ = self._get_index_and_items() sbins = first_items.values.astype(np.int64) group_indices: GroupIndices = tuple( [slice(i, j) for i, j in pairwise(sbins)] + [slice(sbins[-1], None)] ) unique_coord = Variable( dims=group.name, data=first_items.index, attrs=group.attrs ) codes = group.copy(data=codes_.reshape(group.shape), deep=False) return EncodedGroups( codes=codes, group_indices=group_indices, full_index=full_index, unique_coord=unique_coord, coords=_coordinates_from_variable(unique_coord), ) def _factorize_given_labels(data: np.ndarray, labels: np.ndarray) -> np.ndarray: # Copied from flox sorter = np.argsort(labels) is_sorted = (sorter == np.arange(sorter.size)).all() codes = np.searchsorted(labels, data, sorter=sorter) mask = ~np.isin(data, labels) | isnull(data) | (codes == len(labels)) # codes is the index in to the sorted array. # if we didn't want sorting, unsort it back if not is_sorted: codes[codes == len(labels)] = -1 codes = sorter[(codes,)] codes[mask] = -1 return codes def unique_value_groups( ar, sort: bool = True ) -> tuple[np.ndarray | pd.Index, np.ndarray]: """Group an array by its unique values. Parameters ---------- ar : array-like Input array. This will be flattened if it is not already 1-D. sort : bool, default: True Whether or not to sort unique values. Returns ------- values : np.ndarray Sorted, unique values as returned by `np.unique`. indices : list of lists of int Each element provides the integer indices in `ar` with values given by the corresponding value in `unique_values`. """ inverse, values = pd.factorize(ar, sort=sort) if isinstance(values, pd.MultiIndex): values.names = ar.names return values, inverse