CCR/.venv/lib/python3.12/site-packages/xarray/backends/scipy_.py

347 lines
11 KiB
Python

from __future__ import annotations
import gzip
import io
import os
from collections.abc import Iterable
from typing import TYPE_CHECKING, Any
import numpy as np
from xarray.backends.common import (
BACKEND_ENTRYPOINTS,
BackendArray,
BackendEntrypoint,
WritableCFDataStore,
_normalize_path,
)
from xarray.backends.file_manager import CachingFileManager, DummyFileManager
from xarray.backends.locks import ensure_lock, get_write_lock
from xarray.backends.netcdf3 import (
encode_nc3_attr_value,
encode_nc3_variable,
is_valid_nc3_name,
)
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.utils import (
Frozen,
FrozenDict,
close_on_error,
module_available,
try_read_magic_number_from_file_or_path,
)
from xarray.core.variable import Variable
if TYPE_CHECKING:
from xarray.backends.common import AbstractDataStore
from xarray.core.dataset import Dataset
from xarray.core.types import ReadBuffer
HAS_NUMPY_2_0 = module_available("numpy", minversion="2.0.0.dev0")
def _decode_string(s):
if isinstance(s, bytes):
return s.decode("utf-8", "replace")
return s
def _decode_attrs(d):
# don't decode _FillValue from bytes -> unicode, because we want to ensure
# that its type matches the data exactly
return {k: v if k == "_FillValue" else _decode_string(v) for (k, v) in d.items()}
class ScipyArrayWrapper(BackendArray):
def __init__(self, variable_name, datastore):
self.datastore = datastore
self.variable_name = variable_name
array = self.get_variable().data
self.shape = array.shape
self.dtype = np.dtype(array.dtype.kind + str(array.dtype.itemsize))
def get_variable(self, needs_lock=True):
ds = self.datastore._manager.acquire(needs_lock)
return ds.variables[self.variable_name]
def _getitem(self, key):
with self.datastore.lock:
data = self.get_variable(needs_lock=False).data
return data[key]
def __getitem__(self, key):
data = indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
)
# Copy data if the source file is mmapped. This makes things consistent
# with the netCDF4 library by ensuring we can safely read arrays even
# after closing associated files.
copy = self.datastore.ds.use_mmap
# adapt handling of copy-kwarg to numpy 2.0
# see https://github.com/numpy/numpy/issues/25916
# and https://github.com/numpy/numpy/pull/25922
copy = None if HAS_NUMPY_2_0 and copy is False else copy
return np.array(data, dtype=self.dtype, copy=copy)
def __setitem__(self, key, value):
with self.datastore.lock:
data = self.get_variable(needs_lock=False)
try:
data[key] = value
except TypeError:
if key is Ellipsis:
# workaround for GH: scipy/scipy#6880
data[:] = value
else:
raise
def _open_scipy_netcdf(filename, mode, mmap, version):
import scipy.io
# if the string ends with .gz, then gunzip and open as netcdf file
if isinstance(filename, str) and filename.endswith(".gz"):
try:
return scipy.io.netcdf_file(
gzip.open(filename), mode=mode, mmap=mmap, version=version
)
except TypeError as e:
# TODO: gzipped loading only works with NetCDF3 files.
errmsg = e.args[0]
if "is not a valid NetCDF 3 file" in errmsg:
raise ValueError(
"gzipped file loading only supports NetCDF 3 files."
) from e
else:
raise
if isinstance(filename, bytes) and filename.startswith(b"CDF"):
# it's a NetCDF3 bytestring
filename = io.BytesIO(filename)
try:
return scipy.io.netcdf_file(filename, mode=mode, mmap=mmap, version=version)
except TypeError as e: # netcdf3 message is obscure in this case
errmsg = e.args[0]
if "is not a valid NetCDF 3 file" in errmsg:
msg = """
If this is a NetCDF4 file, you may need to install the
netcdf4 library, e.g.,
$ pip install netcdf4
"""
errmsg += msg
raise TypeError(errmsg) from e
else:
raise
class ScipyDataStore(WritableCFDataStore):
"""Store for reading and writing data via scipy.io.netcdf.
This store has the advantage of being able to be initialized with a
StringIO object, allow for serialization without writing to disk.
It only supports the NetCDF3 file-format.
"""
def __init__(
self, filename_or_obj, mode="r", format=None, group=None, mmap=None, lock=None
):
if group is not None:
raise ValueError("cannot save to a group with the scipy.io.netcdf backend")
if format is None or format == "NETCDF3_64BIT":
version = 2
elif format == "NETCDF3_CLASSIC":
version = 1
else:
raise ValueError(f"invalid format for scipy.io.netcdf backend: {format!r}")
if lock is None and mode != "r" and isinstance(filename_or_obj, str):
lock = get_write_lock(filename_or_obj)
self.lock = ensure_lock(lock)
if isinstance(filename_or_obj, str):
manager = CachingFileManager(
_open_scipy_netcdf,
filename_or_obj,
mode=mode,
lock=lock,
kwargs=dict(mmap=mmap, version=version),
)
else:
scipy_dataset = _open_scipy_netcdf(
filename_or_obj, mode=mode, mmap=mmap, version=version
)
manager = DummyFileManager(scipy_dataset)
self._manager = manager
@property
def ds(self):
return self._manager.acquire()
def open_store_variable(self, name, var):
return Variable(
var.dimensions,
ScipyArrayWrapper(name, self),
_decode_attrs(var._attributes),
)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
)
def get_attrs(self):
return Frozen(_decode_attrs(self.ds._attributes))
def get_dimensions(self):
return Frozen(self.ds.dimensions)
def get_encoding(self):
return {
"unlimited_dims": {k for k, v in self.ds.dimensions.items() if v is None}
}
def set_dimension(self, name, length, is_unlimited=False):
if name in self.ds.dimensions:
raise ValueError(
f"{type(self).__name__} does not support modifying dimensions"
)
dim_length = length if not is_unlimited else None
self.ds.createDimension(name, dim_length)
def _validate_attr_key(self, key):
if not is_valid_nc3_name(key):
raise ValueError("Not a valid attribute name")
def set_attribute(self, key, value):
self._validate_attr_key(key)
value = encode_nc3_attr_value(value)
setattr(self.ds, key, value)
def encode_variable(self, variable):
variable = encode_nc3_variable(variable)
return variable
def prepare_variable(
self, name, variable, check_encoding=False, unlimited_dims=None
):
if (
check_encoding
and variable.encoding
and variable.encoding != {"_FillValue": None}
):
raise ValueError(
f"unexpected encoding for scipy backend: {list(variable.encoding)}"
)
data = variable.data
# nb. this still creates a numpy array in all memory, even though we
# don't write the data yet; scipy.io.netcdf does not not support
# incremental writes.
if name not in self.ds.variables:
self.ds.createVariable(name, data.dtype, variable.dims)
scipy_var = self.ds.variables[name]
for k, v in variable.attrs.items():
self._validate_attr_key(k)
setattr(scipy_var, k, v)
target = ScipyArrayWrapper(name, self)
return target, data
def sync(self):
self.ds.sync()
def close(self):
self._manager.close()
class ScipyBackendEntrypoint(BackendEntrypoint):
"""
Backend for netCDF files based on the scipy package.
It can open ".nc", ".nc4", ".cdf" and ".gz" files but will only be
selected as the default if the "netcdf4" and "h5netcdf" engines are
not available. It has the advantage that is is a lightweight engine
that has no system requirements (unlike netcdf4 and h5netcdf).
Additionally it can open gizp compressed (".gz") files.
For more information about the underlying library, visit:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.netcdf_file.html
See Also
--------
backends.ScipyDataStore
backends.NetCDF4BackendEntrypoint
backends.H5netcdfBackendEntrypoint
"""
description = "Open netCDF files (.nc, .nc4, .cdf and .gz) using scipy in Xarray"
url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.ScipyBackendEntrypoint.html"
def guess_can_open(
self,
filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
) -> bool:
magic_number = try_read_magic_number_from_file_or_path(filename_or_obj)
if magic_number is not None and magic_number.startswith(b"\x1f\x8b"):
with gzip.open(filename_or_obj) as f: # type: ignore[arg-type]
magic_number = try_read_magic_number_from_file_or_path(f)
if magic_number is not None:
return magic_number.startswith(b"CDF")
if isinstance(filename_or_obj, str | os.PathLike):
_, ext = os.path.splitext(filename_or_obj)
return ext in {".nc", ".nc4", ".cdf", ".gz"}
return False
def open_dataset(
self,
filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
mode="r",
format=None,
group=None,
mmap=None,
lock=None,
) -> Dataset:
filename_or_obj = _normalize_path(filename_or_obj)
store = ScipyDataStore(
filename_or_obj, mode=mode, format=format, group=group, mmap=mmap, lock=lock
)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(store):
ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
return ds
BACKEND_ENTRYPOINTS["scipy"] = ("scipy", ScipyBackendEntrypoint)