CCR/.venv/lib/python3.12/site-packages/xarray/groupers.py

586 lines
21 KiB
Python

"""
This module provides Grouper objects that encapsulate the
"factorization" process - conversion of value we are grouping by
to integer codes (one per group).
"""
from __future__ import annotations
import datetime
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from itertools import pairwise
from typing import TYPE_CHECKING, Any, Literal, cast
import numpy as np
import pandas as pd
from numpy.typing import ArrayLike
from xarray.coding.cftime_offsets import BaseCFTimeOffset, _new_to_legacy_freq
from xarray.core import duck_array_ops
from xarray.core.computation import apply_ufunc
from xarray.core.coordinates import Coordinates, _coordinates_from_variable
from xarray.core.dataarray import DataArray
from xarray.core.duck_array_ops import isnull
from xarray.core.groupby import T_Group, _DummyGroup
from xarray.core.indexes import safe_cast_to_index
from xarray.core.resample_cftime import CFTimeGrouper
from xarray.core.types import (
Bins,
DatetimeLike,
GroupIndices,
ResampleCompatible,
Self,
SideOptions,
)
from xarray.core.variable import Variable
from xarray.namedarray.pycompat import is_chunked_array
__all__ = [
"BinGrouper",
"EncodedGroups",
"Grouper",
"Resampler",
"TimeResampler",
"UniqueGrouper",
]
RESAMPLE_DIM = "__resample_dim__"
@dataclass(init=False)
class EncodedGroups:
"""
Dataclass for storing intermediate values for GroupBy operation.
Returned by the ``factorize`` method on Grouper objects.
Attributes
----------
codes : DataArray
Same shape as the DataArray to group by. Values consist of a unique integer code for each group.
full_index : pd.Index
Pandas Index for the group coordinate containing unique group labels.
This can differ from ``unique_coord`` in the case of resampling and binning,
where certain groups in the output need not be present in the input.
group_indices : tuple of int or slice or list of int, optional
List of indices of array elements belonging to each group. Inferred if not provided.
unique_coord : Variable, optional
Unique group values present in dataset. Inferred if not provided
"""
codes: DataArray
full_index: pd.Index
group_indices: GroupIndices
unique_coord: Variable | _DummyGroup
coords: Coordinates
def __init__(
self,
codes: DataArray,
full_index: pd.Index,
group_indices: GroupIndices | None = None,
unique_coord: Variable | _DummyGroup | None = None,
coords: Coordinates | None = None,
):
from xarray.core.groupby import _codes_to_group_indices
assert isinstance(codes, DataArray)
if codes.name is None:
raise ValueError("Please set a name on the array you are grouping by.")
self.codes = codes
assert isinstance(full_index, pd.Index)
self.full_index = full_index
if group_indices is None:
if not is_chunked_array(codes.data):
self.group_indices = tuple(
g
for g in _codes_to_group_indices(
codes.data.ravel(), len(full_index)
)
if g
)
else:
# We will not use this when grouping by a chunked array
self.group_indices = tuple()
else:
self.group_indices = group_indices
if unique_coord is None:
unique_values = full_index[np.unique(codes)]
self.unique_coord = Variable(
dims=codes.name, data=unique_values, attrs=codes.attrs
)
else:
self.unique_coord = unique_coord
if coords is None:
assert not isinstance(self.unique_coord, _DummyGroup)
self.coords = _coordinates_from_variable(self.unique_coord)
else:
self.coords = coords
class Grouper(ABC):
"""Abstract base class for Grouper objects that allow specializing GroupBy instructions."""
@abstractmethod
def factorize(self, group: T_Group) -> EncodedGroups:
"""
Creates intermediates necessary for GroupBy.
Parameters
----------
group : DataArray
DataArray we are grouping by.
Returns
-------
EncodedGroups
"""
pass
@abstractmethod
def reset(self) -> Self:
"""
Creates a new version of this Grouper clearing any caches.
"""
pass
class Resampler(Grouper):
"""
Abstract base class for Grouper objects that allow specializing resampling-type GroupBy instructions.
Currently only used for TimeResampler, but could be used for SpaceResampler in the future.
"""
pass
@dataclass
class UniqueGrouper(Grouper):
"""
Grouper object for grouping by a categorical variable.
Parameters
----------
labels: array-like, optional
Group labels to aggregate on. This is required when grouping by a chunked array type
(e.g. dask or cubed) since it is used to construct the coordinate on the output.
Grouped operations will only be run on the specified group labels. Any group that is not
present in ``labels`` will be ignored.
"""
_group_as_index: pd.Index | None = field(default=None, repr=False)
labels: ArrayLike | None = field(default=None)
@property
def group_as_index(self) -> pd.Index:
"""Caches the group DataArray as a pandas Index."""
if self._group_as_index is None:
if self.group.ndim == 1:
self._group_as_index = self.group.to_index()
else:
self._group_as_index = pd.Index(np.array(self.group).ravel())
return self._group_as_index
def reset(self) -> Self:
return type(self)()
def factorize(self, group: T_Group) -> EncodedGroups:
self.group = group
if is_chunked_array(group.data) and self.labels is None:
raise ValueError(
"When grouping by a dask array, `labels` must be passed using "
"a UniqueGrouper object."
)
if self.labels is not None:
return self._factorize_given_labels(group)
index = self.group_as_index
is_unique_and_monotonic = isinstance(self.group, _DummyGroup) or (
index.is_unique
and (index.is_monotonic_increasing or index.is_monotonic_decreasing)
)
is_dimension = self.group.dims == (self.group.name,)
can_squeeze = is_dimension and is_unique_and_monotonic
if can_squeeze:
return self._factorize_dummy()
else:
return self._factorize_unique()
def _factorize_given_labels(self, group: T_Group) -> EncodedGroups:
codes = apply_ufunc(
_factorize_given_labels,
group,
kwargs={"labels": self.labels},
dask="parallelized",
output_dtypes=[np.int64],
keep_attrs=True,
)
return EncodedGroups(
codes=codes,
full_index=pd.Index(self.labels), # type: ignore[arg-type]
unique_coord=Variable(
dims=codes.name,
data=self.labels,
attrs=self.group.attrs,
),
)
def _factorize_unique(self) -> EncodedGroups:
# look through group to find the unique values
sort = not isinstance(self.group_as_index, pd.MultiIndex)
unique_values, codes_ = unique_value_groups(self.group_as_index, sort=sort)
if (codes_ == -1).all():
raise ValueError(
"Failed to group data. Are you grouping by a variable that is all NaN?"
)
codes = self.group.copy(data=codes_.reshape(self.group.shape), deep=False)
unique_coord = Variable(
dims=codes.name, data=unique_values, attrs=self.group.attrs
)
full_index = pd.Index(unique_values)
return EncodedGroups(
codes=codes,
full_index=full_index,
unique_coord=unique_coord,
coords=_coordinates_from_variable(unique_coord),
)
def _factorize_dummy(self) -> EncodedGroups:
size = self.group.size
# no need to factorize
# use slices to do views instead of fancy indexing
# equivalent to: group_indices = group_indices.reshape(-1, 1)
group_indices: GroupIndices = tuple(slice(i, i + 1) for i in range(size))
size_range = np.arange(size)
full_index: pd.Index
unique_coord: _DummyGroup | Variable
if isinstance(self.group, _DummyGroup):
codes = self.group.to_dataarray().copy(data=size_range)
unique_coord = self.group
full_index = pd.RangeIndex(self.group.size)
coords = Coordinates()
else:
codes = self.group.copy(data=size_range, deep=False)
unique_coord = self.group.variable.to_base_variable()
full_index = self.group_as_index
if isinstance(full_index, pd.MultiIndex):
coords = Coordinates.from_pandas_multiindex(
full_index, dim=self.group.name
)
else:
if TYPE_CHECKING:
assert isinstance(unique_coord, Variable)
coords = _coordinates_from_variable(unique_coord)
return EncodedGroups(
codes=codes,
group_indices=group_indices,
full_index=full_index,
unique_coord=unique_coord,
coords=coords,
)
@dataclass
class BinGrouper(Grouper):
"""
Grouper object for binning numeric data.
Attributes
----------
bins : int, sequence of scalars, or IntervalIndex
The criteria to bin by.
* int : Defines the number of equal-width bins in the range of `x`. The
range of `x` is extended by .1% on each side to include the minimum
and maximum values of `x`.
* sequence of scalars : Defines the bin edges allowing for non-uniform
width. No extension of the range of `x` is done.
* IntervalIndex : Defines the exact bins to be used. Note that
IntervalIndex for `bins` must be non-overlapping.
right : bool, default True
Indicates whether `bins` includes the rightmost edge or not. If
``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]``
indicate (1,2], (2,3], (3,4]. This argument is ignored when
`bins` is an IntervalIndex.
labels : array or False, default None
Specifies the labels for the returned bins. Must be the same length as
the resulting bins. If False, returns only integer indicators of the
bins. This affects the type of the output container (see below).
This argument is ignored when `bins` is an IntervalIndex. If True,
raises an error. When `ordered=False`, labels must be provided.
retbins : bool, default False
Whether to return the bins or not. Useful when bins is provided
as a scalar.
precision : int, default 3
The precision at which to store and display the bins labels.
include_lowest : bool, default False
Whether the first interval should be left-inclusive or not.
duplicates : {"raise", "drop"}, default: "raise"
If bin edges are not unique, raise ValueError or drop non-uniques.
"""
bins: Bins
# The rest are copied from pandas
right: bool = True
labels: Any = None
precision: int = 3
include_lowest: bool = False
duplicates: Literal["raise", "drop"] = "raise"
def reset(self) -> Self:
return type(self)(
bins=self.bins,
right=self.right,
labels=self.labels,
precision=self.precision,
include_lowest=self.include_lowest,
duplicates=self.duplicates,
)
def __post_init__(self) -> None:
if duck_array_ops.isnull(self.bins).all():
raise ValueError("All bin edges are NaN.")
def _cut(self, data):
return pd.cut(
np.asarray(data).ravel(),
bins=self.bins,
right=self.right,
labels=self.labels,
precision=self.precision,
include_lowest=self.include_lowest,
duplicates=self.duplicates,
retbins=True,
)
def _factorize_lazy(self, group: T_Group) -> DataArray:
def _wrapper(data, **kwargs):
binned, bins = self._cut(data)
if isinstance(self.bins, int):
# we are running eagerly, update self.bins with actual edges instead
self.bins = bins
return binned.codes.reshape(data.shape)
return apply_ufunc(_wrapper, group, dask="parallelized", keep_attrs=True)
def factorize(self, group: T_Group) -> EncodedGroups:
if isinstance(group, _DummyGroup):
group = DataArray(group.data, dims=group.dims, name=group.name)
by_is_chunked = is_chunked_array(group.data)
if isinstance(self.bins, int) and by_is_chunked:
raise ValueError(
f"Bin edges must be provided when grouping by chunked arrays. Received {self.bins=!r} instead"
)
codes = self._factorize_lazy(group)
if not by_is_chunked and (codes == -1).all():
raise ValueError(
f"None of the data falls within bins with edges {self.bins!r}"
)
new_dim_name = f"{group.name}_bins"
codes.name = new_dim_name
# This seems silly, but it lets us have Pandas handle the complexity
# of `labels`, `precision`, and `include_lowest`, even when group is a chunked array
dummy, _ = self._cut(np.array([0]).astype(group.dtype))
full_index = dummy.categories
if not by_is_chunked:
uniques = np.sort(pd.unique(codes.data.ravel()))
unique_values = full_index[uniques[uniques != -1]]
else:
unique_values = full_index
unique_coord = Variable(
dims=new_dim_name, data=unique_values, attrs=group.attrs
)
return EncodedGroups(
codes=codes,
full_index=full_index,
unique_coord=unique_coord,
coords=_coordinates_from_variable(unique_coord),
)
@dataclass(repr=False)
class TimeResampler(Resampler):
"""
Grouper object specialized to resampling the time coordinate.
Attributes
----------
freq : str, datetime.timedelta, pandas.Timestamp, or pandas.DateOffset
Frequency to resample to. See `Pandas frequency
aliases <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_
for a list of possible values.
closed : {"left", "right"}, optional
Side of each interval to treat as closed.
label : {"left", "right"}, optional
Side of each interval to use for labeling.
origin : {'epoch', 'start', 'start_day', 'end', 'end_day'}, pandas.Timestamp, datetime.datetime, numpy.datetime64, or cftime.datetime, default 'start_day'
The datetime on which to adjust the grouping. The timezone of origin
must match the timezone of the index.
If a datetime is not used, these values are also supported:
- 'epoch': `origin` is 1970-01-01
- 'start': `origin` is the first value of the timeseries
- 'start_day': `origin` is the first day at midnight of the timeseries
- 'end': `origin` is the last value of the timeseries
- 'end_day': `origin` is the ceiling midnight of the last day
offset : pd.Timedelta, datetime.timedelta, or str, default is None
An offset timedelta added to the origin.
"""
freq: ResampleCompatible
closed: SideOptions | None = field(default=None)
label: SideOptions | None = field(default=None)
origin: str | DatetimeLike = field(default="start_day")
offset: pd.Timedelta | datetime.timedelta | str | None = field(default=None)
index_grouper: CFTimeGrouper | pd.Grouper = field(init=False, repr=False)
group_as_index: pd.Index = field(init=False, repr=False)
def reset(self) -> Self:
return type(self)(
freq=self.freq,
closed=self.closed,
label=self.label,
origin=self.origin,
offset=self.offset,
)
def _init_properties(self, group: T_Group) -> None:
from xarray import CFTimeIndex
group_as_index = safe_cast_to_index(group)
offset = self.offset
if not group_as_index.is_monotonic_increasing:
# TODO: sort instead of raising an error
raise ValueError("Index must be monotonic for resampling")
if isinstance(group_as_index, CFTimeIndex):
from xarray.core.resample_cftime import CFTimeGrouper
self.index_grouper = CFTimeGrouper(
freq=self.freq,
closed=self.closed,
label=self.label,
origin=self.origin,
offset=offset,
)
else:
if isinstance(self.freq, BaseCFTimeOffset):
raise ValueError(
"'BaseCFTimeOffset' resample frequencies are only supported "
"when resampling a 'CFTimeIndex'"
)
self.index_grouper = pd.Grouper(
# TODO remove once requiring pandas >= 2.2
freq=_new_to_legacy_freq(self.freq),
closed=self.closed,
label=self.label,
origin=self.origin,
offset=offset,
)
self.group_as_index = group_as_index
def _get_index_and_items(self) -> tuple[pd.Index, pd.Series, np.ndarray]:
first_items, codes = self.first_items()
full_index = first_items.index
if first_items.isnull().any():
first_items = first_items.dropna()
full_index = full_index.rename("__resample_dim__")
return full_index, first_items, codes
def first_items(self) -> tuple[pd.Series, np.ndarray]:
from xarray.coding.cftimeindex import CFTimeIndex
from xarray.core.resample_cftime import CFTimeGrouper
if isinstance(self.index_grouper, CFTimeGrouper):
return self.index_grouper.first_items(
cast(CFTimeIndex, self.group_as_index)
)
else:
s = pd.Series(np.arange(self.group_as_index.size), self.group_as_index)
grouped = s.groupby(self.index_grouper)
first_items = grouped.first()
counts = grouped.count()
# This way we generate codes for the final output index: full_index.
# So for _flox_reduce we avoid one reindex and copy by avoiding
# _maybe_restore_empty_groups
codes = np.repeat(np.arange(len(first_items)), counts)
return first_items, codes
def factorize(self, group: T_Group) -> EncodedGroups:
self._init_properties(group)
full_index, first_items, codes_ = self._get_index_and_items()
sbins = first_items.values.astype(np.int64)
group_indices: GroupIndices = tuple(
[slice(i, j) for i, j in pairwise(sbins)] + [slice(sbins[-1], None)]
)
unique_coord = Variable(
dims=group.name, data=first_items.index, attrs=group.attrs
)
codes = group.copy(data=codes_.reshape(group.shape), deep=False)
return EncodedGroups(
codes=codes,
group_indices=group_indices,
full_index=full_index,
unique_coord=unique_coord,
coords=_coordinates_from_variable(unique_coord),
)
def _factorize_given_labels(data: np.ndarray, labels: np.ndarray) -> np.ndarray:
# Copied from flox
sorter = np.argsort(labels)
is_sorted = (sorter == np.arange(sorter.size)).all()
codes = np.searchsorted(labels, data, sorter=sorter)
mask = ~np.isin(data, labels) | isnull(data) | (codes == len(labels))
# codes is the index in to the sorted array.
# if we didn't want sorting, unsort it back
if not is_sorted:
codes[codes == len(labels)] = -1
codes = sorter[(codes,)]
codes[mask] = -1
return codes
def unique_value_groups(
ar, sort: bool = True
) -> tuple[np.ndarray | pd.Index, np.ndarray]:
"""Group an array by its unique values.
Parameters
----------
ar : array-like
Input array. This will be flattened if it is not already 1-D.
sort : bool, default: True
Whether or not to sort unique values.
Returns
-------
values : np.ndarray
Sorted, unique values as returned by `np.unique`.
indices : list of lists of int
Each element provides the integer indices in `ar` with values given by
the corresponding value in `unique_values`.
"""
inverse, values = pd.factorize(ar, sort=sort)
if isinstance(values, pd.MultiIndex):
values.names = ar.names
return values, inverse