CCR/.venv/lib/python3.12/site-packages/xarray/plot/facetgrid.py

1083 lines
37 KiB
Python

from __future__ import annotations
import functools
import itertools
import warnings
from collections.abc import Callable, Hashable, Iterable, MutableMapping
from typing import TYPE_CHECKING, Any, Generic, Literal, TypeVar, cast
import numpy as np
from xarray.core.formatting import format_item
from xarray.core.types import HueStyleOptions, T_DataArrayOrSet
from xarray.plot.utils import (
_LINEWIDTH_RANGE,
_MARKERSIZE_RANGE,
_add_legend,
_determine_guide,
_get_nice_quiver_magnitude,
_guess_coords_to_plot,
_infer_xy_labels,
_Normalize,
_parse_size,
_process_cmap_cbar_kwargs,
label_from_attrs,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.cm import ScalarMappable
from matplotlib.colorbar import Colorbar
from matplotlib.figure import Figure
from matplotlib.legend import Legend
from matplotlib.quiver import QuiverKey
from matplotlib.text import Annotation
from xarray.core.dataarray import DataArray
# Overrides axes.labelsize, xtick.major.size, ytick.major.size
# from mpl.rcParams
_FONTSIZE = "small"
# For major ticks on x, y axes
_NTICKS = 5
def _nicetitle(coord, value, maxchar, template):
"""
Put coord, value in template and truncate at maxchar
"""
prettyvalue = format_item(value, quote_strings=False)
title = template.format(coord=coord, value=prettyvalue)
if len(title) > maxchar:
title = title[: (maxchar - 3)] + "..."
return title
T_FacetGrid = TypeVar("T_FacetGrid", bound="FacetGrid")
class FacetGrid(Generic[T_DataArrayOrSet]):
"""
Initialize the Matplotlib figure and FacetGrid object.
The :class:`FacetGrid` is an object that links a xarray DataArray to
a Matplotlib figure with a particular structure.
In particular, :class:`FacetGrid` is used to draw plots with multiple
axes, where each axes shows the same relationship conditioned on
different levels of some dimension. It's possible to condition on up to
two variables by assigning variables to the rows and columns of the
grid.
The general approach to plotting here is called "small multiples",
where the same kind of plot is repeated multiple times, and the
specific use of small multiples to display the same relationship
conditioned on one or more other variables is often called a "trellis
plot".
The basic workflow is to initialize the :class:`FacetGrid` object with
the DataArray and the variable names that are used to structure the grid.
Then plotting functions can be applied to each subset by calling
:meth:`FacetGrid.map_dataarray` or :meth:`FacetGrid.map`.
Attributes
----------
axs : ndarray of matplotlib.axes.Axes
Array containing axes in corresponding position, as returned from
:py:func:`matplotlib.pyplot.subplots`.
col_labels : list of matplotlib.text.Annotation
Column titles.
row_labels : list of matplotlib.text.Annotation
Row titles.
fig : matplotlib.figure.Figure
The figure containing all the axes.
name_dicts : ndarray of dict
Array containing dictionaries mapping coordinate names to values. ``None`` is
used as a sentinel value for axes that should remain empty, i.e.,
sometimes the rightmost grid positions in the bottom row.
"""
data: T_DataArrayOrSet
name_dicts: np.ndarray
fig: Figure
axs: np.ndarray
row_names: list[np.ndarray]
col_names: list[np.ndarray]
figlegend: Legend | None
quiverkey: QuiverKey | None
cbar: Colorbar | None
_single_group: bool | Hashable
_nrow: int
_row_var: Hashable | None
_ncol: int
_col_var: Hashable | None
_col_wrap: int | None
row_labels: list[Annotation | None]
col_labels: list[Annotation | None]
_x_var: None
_y_var: None
_hue_var: DataArray | None
_cmap_extend: Any | None
_mappables: list[ScalarMappable]
_finalized: bool
def __init__(
self,
data: T_DataArrayOrSet,
col: Hashable | None = None,
row: Hashable | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
figsize: Iterable[float] | None = None,
aspect: float = 1,
size: float = 3,
subplot_kws: dict[str, Any] | None = None,
) -> None:
"""
Parameters
----------
data : DataArray or Dataset
DataArray or Dataset to be plotted.
row, col : str
Dimension names that define subsets of the data, which will be drawn
on separate facets in the grid.
col_wrap : int, optional
"Wrap" the grid the for the column variable after this number of columns,
adding rows if ``col_wrap`` is less than the number of facets.
sharex : bool, optional
If true, the facets will share *x* axes.
sharey : bool, optional
If true, the facets will share *y* axes.
figsize : Iterable of float or None, optional
A tuple (width, height) of the figure in inches.
If set, overrides ``size`` and ``aspect``.
aspect : scalar, default: 1
Aspect ratio of each facet, so that ``aspect * size`` gives the
width of each facet in inches.
size : scalar, default: 3
Height (in inches) of each facet. See also: ``aspect``.
subplot_kws : dict, optional
Dictionary of keyword arguments for Matplotlib subplots
(:py:func:`matplotlib.pyplot.subplots`).
"""
import matplotlib.pyplot as plt
# Handle corner case of nonunique coordinates
rep_col = col is not None and not data[col].to_index().is_unique
rep_row = row is not None and not data[row].to_index().is_unique
if rep_col or rep_row:
raise ValueError(
"Coordinates used for faceting cannot "
"contain repeated (nonunique) values."
)
# single_group is the grouping variable, if there is exactly one
single_group: bool | Hashable
if col and row:
single_group = False
nrow = len(data[row])
ncol = len(data[col])
nfacet = nrow * ncol
if col_wrap is not None:
warnings.warn(
"Ignoring col_wrap since both col and row were passed", stacklevel=2
)
elif row and not col:
single_group = row
elif not row and col:
single_group = col
else:
raise ValueError("Pass a coordinate name as an argument for row or col")
# Compute grid shape
if single_group:
nfacet = len(data[single_group])
if col:
# idea - could add heuristic for nice shapes like 3x4
ncol = nfacet
if row:
ncol = 1
if col_wrap is not None:
# Overrides previous settings
ncol = col_wrap
nrow = int(np.ceil(nfacet / ncol))
# Set the subplot kwargs
subplot_kws = {} if subplot_kws is None else subplot_kws
if figsize is None:
# Calculate the base figure size with extra horizontal space for a
# colorbar
cbar_space = 1
figsize = (ncol * size * aspect + cbar_space, nrow * size)
fig, axs = plt.subplots(
nrow,
ncol,
sharex=sharex,
sharey=sharey,
squeeze=False,
figsize=figsize,
subplot_kw=subplot_kws,
)
# Set up the lists of names for the row and column facet variables
col_names = list(data[col].to_numpy()) if col else []
row_names = list(data[row].to_numpy()) if row else []
if single_group:
full: list[dict[Hashable, Any] | None] = [
{single_group: x} for x in data[single_group].to_numpy()
]
empty: list[dict[Hashable, Any] | None] = [
None for x in range(nrow * ncol - len(full))
]
name_dict_list = full + empty
else:
rowcols = itertools.product(row_names, col_names)
name_dict_list = [{row: r, col: c} for r, c in rowcols]
name_dicts = np.array(name_dict_list).reshape(nrow, ncol)
# Set up the class attributes
# ---------------------------
# First the public API
self.data = data
self.name_dicts = name_dicts
self.fig = fig
self.axs = axs
self.row_names = row_names
self.col_names = col_names
# guides
self.figlegend = None
self.quiverkey = None
self.cbar = None
# Next the private variables
self._single_group = single_group
self._nrow = nrow
self._row_var = row
self._ncol = ncol
self._col_var = col
self._col_wrap = col_wrap
self.row_labels = [None] * nrow
self.col_labels = [None] * ncol
self._x_var = None
self._y_var = None
self._hue_var = None
self._cmap_extend = None
self._mappables = []
self._finalized = False
@property
def axes(self) -> np.ndarray:
warnings.warn(
(
"self.axes is deprecated since 2022.11 in order to align with "
"matplotlibs plt.subplots, use self.axs instead."
),
DeprecationWarning,
stacklevel=2,
)
return self.axs
@axes.setter
def axes(self, axs: np.ndarray) -> None:
warnings.warn(
(
"self.axes is deprecated since 2022.11 in order to align with "
"matplotlibs plt.subplots, use self.axs instead."
),
DeprecationWarning,
stacklevel=2,
)
self.axs = axs
@property
def _left_axes(self) -> np.ndarray:
return self.axs[:, 0]
@property
def _bottom_axes(self) -> np.ndarray:
return self.axs[-1, :]
def map_dataarray(
self: T_FacetGrid,
func: Callable,
x: Hashable | None,
y: Hashable | None,
**kwargs: Any,
) -> T_FacetGrid:
"""
Apply a plotting function to a 2d facet's subset of the data.
This is more convenient and less general than ``FacetGrid.map``
Parameters
----------
func : callable
A plotting function with the same signature as a 2d xarray
plotting method such as `xarray.plot.imshow`
x, y : string
Names of the coordinates to plot on x, y axes
**kwargs
additional keyword arguments to func
Returns
-------
self : FacetGrid object
"""
if kwargs.get("cbar_ax") is not None:
raise ValueError("cbar_ax not supported by FacetGrid.")
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
func, self.data.to_numpy(), **kwargs
)
self._cmap_extend = cmap_params.get("extend")
# Order is important
func_kwargs = {
k: v
for k, v in kwargs.items()
if k not in {"cmap", "colors", "cbar_kwargs", "levels"}
}
func_kwargs.update(cmap_params)
func_kwargs["add_colorbar"] = False
if func.__name__ != "surface":
func_kwargs["add_labels"] = False
# Get x, y labels for the first subplot
x, y = _infer_xy_labels(
darray=self.data.loc[self.name_dicts.flat[0]],
x=x,
y=y,
imshow=func.__name__ == "imshow",
rgb=kwargs.get("rgb"),
)
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# None is the sentinel value
if d is not None:
subset = self.data.loc[d]
mappable = func(
subset, x=x, y=y, ax=ax, **func_kwargs, _is_facetgrid=True
)
self._mappables.append(mappable)
self._finalize_grid(x, y)
if kwargs.get("add_colorbar", True):
self.add_colorbar(**cbar_kwargs)
return self
def map_plot1d(
self: T_FacetGrid,
func: Callable,
x: Hashable | None,
y: Hashable | None,
*,
z: Hashable | None = None,
hue: Hashable | None = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
**kwargs: Any,
) -> T_FacetGrid:
"""
Apply a plotting function to a 1d facet's subset of the data.
This is more convenient and less general than ``FacetGrid.map``
Parameters
----------
func :
A plotting function with the same signature as a 1d xarray
plotting method such as `xarray.plot.scatter`
x, y :
Names of the coordinates to plot on x, y axes
**kwargs
additional keyword arguments to func
Returns
-------
self : FacetGrid object
"""
# Copy data to allow converting categoricals to integers and storing
# them in self.data. It is not possible to copy in the init
# unfortunately as there are tests that relies on self.data being
# mutable (test_names_appear_somewhere()). Maybe something to deprecate
# not sure how much that is used outside these tests.
self.data = self.data.copy()
if kwargs.get("cbar_ax") is not None:
raise ValueError("cbar_ax not supported by FacetGrid.")
if func.__name__ == "scatter":
size_ = kwargs.pop("_size", markersize)
size_r = _MARKERSIZE_RANGE
else:
size_ = kwargs.pop("_size", linewidth)
size_r = _LINEWIDTH_RANGE
# Guess what coords to use if some of the values in coords_to_plot are None:
coords_to_plot: MutableMapping[str, Hashable | None] = dict(
x=x, z=z, hue=hue, size=size_
)
coords_to_plot = _guess_coords_to_plot(self.data, coords_to_plot, kwargs)
# Handle hues:
hue = coords_to_plot["hue"]
hueplt = self.data.coords[hue] if hue else None # TODO: _infer_line_data2 ?
hueplt_norm = _Normalize(hueplt)
self._hue_var = hueplt
cbar_kwargs = kwargs.pop("cbar_kwargs", {})
if hueplt_norm.data is not None:
if not hueplt_norm.data_is_numeric:
# TODO: Ticks seems a little too hardcoded, since it will always
# show all the values. But maybe it's ok, since plotting hundreds
# of categorical data isn't that meaningful anyway.
cbar_kwargs.update(format=hueplt_norm.format, ticks=hueplt_norm.ticks)
kwargs.update(levels=hueplt_norm.levels)
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
func,
cast("DataArray", hueplt_norm.values).data,
cbar_kwargs=cbar_kwargs,
**kwargs,
)
self._cmap_extend = cmap_params.get("extend")
else:
cmap_params = {}
# Handle sizes:
size_ = coords_to_plot["size"]
sizeplt = self.data.coords[size_] if size_ else None
sizeplt_norm = _Normalize(data=sizeplt, width=size_r)
if sizeplt_norm.data is not None:
self.data[size_] = sizeplt_norm.values
# Add kwargs that are sent to the plotting function, # order is important ???
func_kwargs = {
k: v
for k, v in kwargs.items()
if k not in {"cmap", "colors", "cbar_kwargs", "levels"}
}
func_kwargs.update(cmap_params)
# Annotations will be handled later, skip those parts in the plotfunc:
func_kwargs["add_colorbar"] = False
func_kwargs["add_legend"] = False
func_kwargs["add_title"] = False
add_labels_ = np.zeros(self.axs.shape + (3,), dtype=bool)
if kwargs.get("z") is not None:
# 3d plots looks better with all labels. 3d plots can't sharex either so it
# is easy to get lost while rotating the plots:
add_labels_[:] = True
else:
# Subplots should have labels on the left and bottom edges only:
add_labels_[-1, :, 0] = True # x
add_labels_[:, 0, 1] = True # y
# add_labels_[:, :, 2] = True # z
# Set up the lists of names for the row and column facet variables:
if self._single_group:
full = tuple(
{self._single_group: x}
for x in range(self.data[self._single_group].size)
)
empty = tuple(None for x in range(self._nrow * self._ncol - len(full)))
name_d = full + empty
else:
rowcols = itertools.product(
range(self.data[self._row_var].size),
range(self.data[self._col_var].size),
)
name_d = tuple({self._row_var: r, self._col_var: c} for r, c in rowcols)
name_dicts = np.array(name_d).reshape(self._nrow, self._ncol)
# Plot the data for each subplot:
for add_lbls, d, ax in zip(
add_labels_.reshape((self.axs.size, -1)),
name_dicts.flat,
self.axs.flat,
strict=True,
):
func_kwargs["add_labels"] = add_lbls
# None is the sentinel value
if d is not None:
subset = self.data.isel(d)
mappable = func(
subset,
x=x,
y=y,
ax=ax,
hue=hue,
_size=size_,
**func_kwargs,
_is_facetgrid=True,
)
self._mappables.append(mappable)
# Add titles and some touch ups:
self._finalize_grid()
self._set_lims()
add_colorbar, add_legend = _determine_guide(
hueplt_norm,
sizeplt_norm,
kwargs.get("add_colorbar"),
kwargs.get("add_legend"),
# kwargs.get("add_guide", None),
# kwargs.get("hue_style", None),
)
if add_legend:
use_legend_elements = False if func.__name__ == "hist" else True
if use_legend_elements:
self.add_legend(
use_legend_elements=use_legend_elements,
hueplt_norm=hueplt_norm if not add_colorbar else _Normalize(None),
sizeplt_norm=sizeplt_norm,
primitive=self._mappables,
legend_ax=self.fig,
plotfunc=func.__name__,
)
else:
self.add_legend(use_legend_elements=use_legend_elements)
if add_colorbar:
# Colorbar is after legend so it correctly fits the plot:
if "label" not in cbar_kwargs:
cbar_kwargs["label"] = label_from_attrs(hueplt_norm.data)
self.add_colorbar(**cbar_kwargs)
return self
def map_dataarray_line(
self: T_FacetGrid,
func: Callable,
x: Hashable | None,
y: Hashable | None,
hue: Hashable | None,
add_legend: bool = True,
_labels=None,
**kwargs: Any,
) -> T_FacetGrid:
from xarray.plot.dataarray_plot import _infer_line_data
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# None is the sentinel value
if d is not None:
subset = self.data.loc[d]
mappable = func(
subset,
x=x,
y=y,
ax=ax,
hue=hue,
add_legend=False,
_labels=False,
**kwargs,
)
self._mappables.append(mappable)
xplt, yplt, hueplt, huelabel = _infer_line_data(
darray=self.data.loc[self.name_dicts.flat[0]], x=x, y=y, hue=hue
)
xlabel = label_from_attrs(xplt)
ylabel = label_from_attrs(yplt)
self._hue_var = hueplt
self._finalize_grid(xlabel, ylabel)
if add_legend and hueplt is not None and huelabel is not None:
self.add_legend(label=huelabel)
return self
def map_dataset(
self: T_FacetGrid,
func: Callable,
x: Hashable | None = None,
y: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
add_guide: bool | None = None,
**kwargs: Any,
) -> T_FacetGrid:
from xarray.plot.dataset_plot import _infer_meta_data
kwargs["add_guide"] = False
if kwargs.get("markersize"):
kwargs["size_mapping"] = _parse_size(
self.data[kwargs["markersize"]], kwargs.pop("size_norm", None)
)
meta_data = _infer_meta_data(
self.data, x, y, hue, hue_style, add_guide, funcname=func.__name__
)
kwargs["meta_data"] = meta_data
if hue and meta_data["hue_style"] == "continuous":
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
func, self.data[hue].to_numpy(), **kwargs
)
kwargs["meta_data"]["cmap_params"] = cmap_params
kwargs["meta_data"]["cbar_kwargs"] = cbar_kwargs
kwargs["_is_facetgrid"] = True
if func.__name__ == "quiver" and "scale" not in kwargs:
raise ValueError("Please provide scale.")
# TODO: come up with an algorithm for reasonable scale choice
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# None is the sentinel value
if d is not None:
subset = self.data.loc[d]
maybe_mappable = func(
ds=subset, x=x, y=y, hue=hue, hue_style=hue_style, ax=ax, **kwargs
)
# TODO: this is needed to get legends to work.
# but maybe_mappable is a list in that case :/
self._mappables.append(maybe_mappable)
self._finalize_grid(meta_data["xlabel"], meta_data["ylabel"])
if hue:
hue_label = meta_data.pop("hue_label", None)
self._hue_label = hue_label
if meta_data["add_legend"]:
self._hue_var = meta_data["hue"]
self.add_legend(label=hue_label)
elif meta_data["add_colorbar"]:
self.add_colorbar(label=hue_label, **cbar_kwargs)
if meta_data["add_quiverkey"]:
self.add_quiverkey(kwargs["u"], kwargs["v"])
return self
def _finalize_grid(self, *axlabels: Hashable) -> None:
"""Finalize the annotations and layout."""
if not self._finalized:
self.set_axis_labels(*axlabels)
self.set_titles()
self.fig.tight_layout()
for ax, namedict in zip(self.axs.flat, self.name_dicts.flat, strict=True):
if namedict is None:
ax.set_visible(False)
self._finalized = True
def _adjust_fig_for_guide(self, guide) -> None:
# Draw the plot to set the bounding boxes correctly
if hasattr(self.fig.canvas, "get_renderer"):
renderer = self.fig.canvas.get_renderer()
else:
raise RuntimeError("MPL backend has no renderer")
self.fig.draw(renderer)
# Calculate and set the new width of the figure so the legend fits
guide_width = guide.get_window_extent(renderer).width / self.fig.dpi
figure_width = self.fig.get_figwidth()
total_width = figure_width + guide_width
self.fig.set_figwidth(total_width)
# Draw the plot again to get the new transformations
self.fig.draw(renderer)
# Now calculate how much space we need on the right side
guide_width = guide.get_window_extent(renderer).width / self.fig.dpi
space_needed = guide_width / total_width + 0.02
# margin = .01
# _space_needed = margin + space_needed
right = 1 - space_needed
# Place the subplot axes to give space for the legend
self.fig.subplots_adjust(right=right)
def add_legend(
self,
*,
label: str | None = None,
use_legend_elements: bool = False,
**kwargs: Any,
) -> None:
if use_legend_elements:
self.figlegend = _add_legend(**kwargs)
else:
assert self._hue_var is not None
self.figlegend = self.fig.legend(
handles=self._mappables[-1],
labels=list(self._hue_var.to_numpy()),
title=label if label is not None else label_from_attrs(self._hue_var),
loc=kwargs.pop("loc", "center right"),
**kwargs,
)
self._adjust_fig_for_guide(self.figlegend)
def add_colorbar(self, **kwargs: Any) -> None:
"""Draw a colorbar."""
kwargs = kwargs.copy()
if self._cmap_extend is not None:
kwargs.setdefault("extend", self._cmap_extend)
# dont pass extend as kwarg if it is in the mappable
if hasattr(self._mappables[-1], "extend"):
kwargs.pop("extend", None)
if "label" not in kwargs:
from xarray import DataArray
assert isinstance(self.data, DataArray)
kwargs.setdefault("label", label_from_attrs(self.data))
self.cbar = self.fig.colorbar(
self._mappables[-1], ax=list(self.axs.flat), **kwargs
)
def add_quiverkey(self, u: Hashable, v: Hashable, **kwargs: Any) -> None:
kwargs = kwargs.copy()
magnitude = _get_nice_quiver_magnitude(self.data[u], self.data[v])
units = self.data[u].attrs.get("units", "")
self.quiverkey = self.axs.flat[-1].quiverkey(
self._mappables[-1],
X=0.8,
Y=0.9,
U=magnitude,
label=f"{magnitude}\n{units}",
labelpos="E",
coordinates="figure",
)
# TODO: does not work because self.quiverkey.get_window_extent(renderer) = 0
# https://github.com/matplotlib/matplotlib/issues/18530
# self._adjust_fig_for_guide(self.quiverkey.text)
def _get_largest_lims(self) -> dict[str, tuple[float, float]]:
"""
Get largest limits in the facetgrid.
Returns
-------
lims_largest : dict[str, tuple[float, float]]
Dictionary with the largest limits along each axis.
Examples
--------
>>> ds = xr.tutorial.scatter_example_dataset(seed=42)
>>> fg = ds.plot.scatter(x="A", y="B", hue="y", row="x", col="w")
>>> round(fg._get_largest_lims()["x"][0], 3)
np.float64(-0.334)
"""
lims_largest: dict[str, tuple[float, float]] = dict(
x=(np.inf, -np.inf), y=(np.inf, -np.inf), z=(np.inf, -np.inf)
)
for axis in ("x", "y", "z"):
# Find the plot with the largest xlim values:
lower, upper = lims_largest[axis]
for ax in self.axs.flat:
get_lim: None | Callable[[], tuple[float, float]] = getattr(
ax, f"get_{axis}lim", None
)
if get_lim:
lower_new, upper_new = get_lim()
lower, upper = (min(lower, lower_new), max(upper, upper_new))
lims_largest[axis] = (lower, upper)
return lims_largest
def _set_lims(
self,
x: tuple[float, float] | None = None,
y: tuple[float, float] | None = None,
z: tuple[float, float] | None = None,
) -> None:
"""
Set the same limits for all the subplots in the facetgrid.
Parameters
----------
x : tuple[float, float] or None, optional
x axis limits.
y : tuple[float, float] or None, optional
y axis limits.
z : tuple[float, float] or None, optional
z axis limits.
Examples
--------
>>> ds = xr.tutorial.scatter_example_dataset(seed=42)
>>> fg = ds.plot.scatter(x="A", y="B", hue="y", row="x", col="w")
>>> fg._set_lims(x=(-0.3, 0.3), y=(0, 2), z=(0, 4))
>>> fg.axs[0, 0].get_xlim(), fg.axs[0, 0].get_ylim()
((np.float64(-0.3), np.float64(0.3)), (np.float64(0.0), np.float64(2.0)))
"""
lims_largest = self._get_largest_lims()
# Set limits:
for ax in self.axs.flat:
for (axis, data_limit), parameter_limit in zip(
lims_largest.items(), (x, y, z), strict=True
):
set_lim = getattr(ax, f"set_{axis}lim", None)
if set_lim:
set_lim(data_limit if parameter_limit is None else parameter_limit)
def set_axis_labels(self, *axlabels: Hashable) -> None:
"""Set axis labels on the left column and bottom row of the grid."""
from xarray.core.dataarray import DataArray
for var, axis in zip(axlabels, ["x", "y", "z"], strict=False):
if var is not None:
if isinstance(var, DataArray):
getattr(self, f"set_{axis}labels")(label_from_attrs(var))
else:
getattr(self, f"set_{axis}labels")(str(var))
def _set_labels(
self, axis: str, axes: Iterable, label: str | None = None, **kwargs
) -> None:
if label is None:
label = label_from_attrs(self.data[getattr(self, f"_{axis}_var")])
for ax in axes:
getattr(ax, f"set_{axis}label")(label, **kwargs)
def set_xlabels(self, label: None | str = None, **kwargs: Any) -> None:
"""Label the x axis on the bottom row of the grid."""
self._set_labels("x", self._bottom_axes, label, **kwargs)
def set_ylabels(self, label: None | str = None, **kwargs: Any) -> None:
"""Label the y axis on the left column of the grid."""
self._set_labels("y", self._left_axes, label, **kwargs)
def set_zlabels(self, label: None | str = None, **kwargs: Any) -> None:
"""Label the z axis."""
self._set_labels("z", self._left_axes, label, **kwargs)
def set_titles(
self,
template: str = "{coord} = {value}",
maxchar: int = 30,
size=None,
**kwargs,
) -> None:
"""
Draw titles either above each facet or on the grid margins.
Parameters
----------
template : str, default: "{coord} = {value}"
Template for plot titles containing {coord} and {value}
maxchar : int, default: 30
Truncate titles at maxchar
**kwargs : keyword args
additional arguments to matplotlib.text
Returns
-------
self: FacetGrid object
"""
import matplotlib as mpl
if size is None:
size = mpl.rcParams["axes.labelsize"]
nicetitle = functools.partial(_nicetitle, maxchar=maxchar, template=template)
if self._single_group:
for d, ax in zip(self.name_dicts.flat, self.axs.flat, strict=True):
# Only label the ones with data
if d is not None:
coord, value = list(d.items()).pop()
title = nicetitle(coord, value, maxchar=maxchar)
ax.set_title(title, size=size, **kwargs)
else:
# The row titles on the right edge of the grid
for index, (ax, row_name, handle) in enumerate(
zip(self.axs[:, -1], self.row_names, self.row_labels, strict=True)
):
title = nicetitle(coord=self._row_var, value=row_name, maxchar=maxchar)
if not handle:
self.row_labels[index] = ax.annotate(
title,
xy=(1.02, 0.5),
xycoords="axes fraction",
rotation=270,
ha="left",
va="center",
**kwargs,
)
else:
handle.set_text(title)
handle.update(kwargs)
# The column titles on the top row
for index, (ax, col_name, handle) in enumerate(
zip(self.axs[0, :], self.col_names, self.col_labels, strict=True)
):
title = nicetitle(coord=self._col_var, value=col_name, maxchar=maxchar)
if not handle:
self.col_labels[index] = ax.set_title(title, size=size, **kwargs)
else:
handle.set_text(title)
handle.update(kwargs)
def set_ticks(
self,
max_xticks: int = _NTICKS,
max_yticks: int = _NTICKS,
fontsize: str | int = _FONTSIZE,
) -> None:
"""
Set and control tick behavior.
Parameters
----------
max_xticks, max_yticks : int, optional
Maximum number of labeled ticks to plot on x, y axes
fontsize : string or int
Font size as used by matplotlib text
Returns
-------
self : FacetGrid object
"""
from matplotlib.ticker import MaxNLocator
# Both are necessary
x_major_locator = MaxNLocator(nbins=max_xticks)
y_major_locator = MaxNLocator(nbins=max_yticks)
for ax in self.axs.flat:
ax.xaxis.set_major_locator(x_major_locator)
ax.yaxis.set_major_locator(y_major_locator)
for tick in itertools.chain(
ax.xaxis.get_major_ticks(), ax.yaxis.get_major_ticks()
):
tick.label1.set_fontsize(fontsize)
def map(
self: T_FacetGrid, func: Callable, *args: Hashable, **kwargs: Any
) -> T_FacetGrid:
"""
Apply a plotting function to each facet's subset of the data.
Parameters
----------
func : callable
A plotting function that takes data and keyword arguments. It
must plot to the currently active matplotlib Axes and take a
`color` keyword argument. If faceting on the `hue` dimension,
it must also take a `label` keyword argument.
*args : Hashable
Column names in self.data that identify variables with data to
plot. The data for each variable is passed to `func` in the
order the variables are specified in the call.
**kwargs : keyword arguments
All keyword arguments are passed to the plotting function.
Returns
-------
self : FacetGrid object
"""
import matplotlib.pyplot as plt
for ax, namedict in zip(self.axs.flat, self.name_dicts.flat, strict=True):
if namedict is not None:
data = self.data.loc[namedict]
plt.sca(ax)
innerargs = [data[a].to_numpy() for a in args]
maybe_mappable = func(*innerargs, **kwargs)
# TODO: better way to verify that an artist is mappable?
# https://stackoverflow.com/questions/33023036/is-it-possible-to-detect-if-a-matplotlib-artist-is-a-mappable-suitable-for-use-w#33023522
if maybe_mappable and hasattr(maybe_mappable, "autoscale_None"):
self._mappables.append(maybe_mappable)
self._finalize_grid(*args[:2])
return self
def _easy_facetgrid(
data: T_DataArrayOrSet,
plotfunc: Callable,
kind: Literal["line", "dataarray", "dataset", "plot1d"],
x: Hashable | None = None,
y: Hashable | None = None,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
sharex: bool = True,
sharey: bool = True,
aspect: float | None = None,
size: float | None = None,
subplot_kws: dict[str, Any] | None = None,
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArrayOrSet]:
"""
Convenience method to call xarray.plot.FacetGrid from 2d plotting methods
kwargs are the arguments to 2d plotting method
"""
if ax is not None:
raise ValueError("Can't use axes when making faceted plots.")
if aspect is None:
aspect = 1
if size is None:
size = 3
elif figsize is not None:
raise ValueError("cannot provide both `figsize` and `size` arguments")
if kwargs.get("z") is not None:
# 3d plots doesn't support sharex, sharey, reset to mpl defaults:
sharex = False
sharey = False
g = FacetGrid(
data=data,
col=col,
row=row,
col_wrap=col_wrap,
sharex=sharex,
sharey=sharey,
figsize=figsize,
aspect=aspect,
size=size,
subplot_kws=subplot_kws,
)
if kind == "line":
return g.map_dataarray_line(plotfunc, x, y, **kwargs)
if kind == "dataarray":
return g.map_dataarray(plotfunc, x, y, **kwargs)
if kind == "plot1d":
return g.map_plot1d(plotfunc, x, y, **kwargs)
if kind == "dataset":
return g.map_dataset(plotfunc, x, y, **kwargs)
raise ValueError(
f"kind must be one of `line`, `dataarray`, `dataset` or `plot1d`, got {kind}"
)