CCR/.venv/lib/python3.12/site-packages/xarray/coding/variables.py

741 lines
27 KiB
Python

"""Coders for individual Variable objects."""
from __future__ import annotations
import warnings
from collections.abc import Callable, Hashable, MutableMapping
from functools import partial
from typing import TYPE_CHECKING, Any, Union
import numpy as np
import pandas as pd
from xarray.core import dtypes, duck_array_ops, indexing
from xarray.core.variable import Variable
from xarray.namedarray.parallelcompat import get_chunked_array_type
from xarray.namedarray.pycompat import is_chunked_array
if TYPE_CHECKING:
T_VarTuple = tuple[tuple[Hashable, ...], Any, dict, dict]
T_Name = Union[Hashable, None]
class SerializationWarning(RuntimeWarning):
"""Warnings about encoding/decoding issues in serialization."""
class VariableCoder:
"""Base class for encoding and decoding transformations on variables.
We use coders for transforming variables between xarray's data model and
a format suitable for serialization. For example, coders apply CF
conventions for how data should be represented in netCDF files.
Subclasses should implement encode() and decode(), which should satisfy
the identity ``coder.decode(coder.encode(variable)) == variable``. If any
options are necessary, they should be implemented as arguments to the
__init__ method.
The optional name argument to encode() and decode() exists solely for the
sake of better error messages, and should correspond to the name of
variables in the underlying store.
"""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
"""Convert an encoded variable to a decoded variable"""
raise NotImplementedError()
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
"""Convert a decoded variable to an encoded variable"""
raise NotImplementedError()
class _ElementwiseFunctionArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Lazily computed array holding values of elemwise-function.
Do not construct this object directly: call lazy_elemwise_func instead.
Values are computed upon indexing or coercion to a NumPy array.
"""
def __init__(self, array, func: Callable, dtype: np.typing.DTypeLike):
assert not is_chunked_array(array)
self.array = indexing.as_indexable(array)
self.func = func
self._dtype = dtype
@property
def dtype(self) -> np.dtype:
return np.dtype(self._dtype)
def _oindex_get(self, key):
return type(self)(self.array.oindex[key], self.func, self.dtype)
def _vindex_get(self, key):
return type(self)(self.array.vindex[key], self.func, self.dtype)
def __getitem__(self, key):
return type(self)(self.array[key], self.func, self.dtype)
def get_duck_array(self):
return self.func(self.array.get_duck_array())
def __repr__(self) -> str:
return f"{type(self).__name__}({self.array!r}, func={self.func!r}, dtype={self.dtype!r})"
class NativeEndiannessArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Decode arrays on the fly from non-native to native endianness
This is useful for decoding arrays from netCDF3 files (which are all
big endian) into native endianness, so they can be used with Cython
functions, such as those found in bottleneck and pandas.
>>> x = np.arange(5, dtype=">i2")
>>> x.dtype
dtype('>i2')
>>> NativeEndiannessArray(x).dtype
dtype('int16')
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> NativeEndiannessArray(x)[indexer].dtype
dtype('int16')
"""
__slots__ = ("array",)
def __init__(self, array) -> None:
self.array = indexing.as_indexable(array)
@property
def dtype(self) -> np.dtype:
return np.dtype(self.array.dtype.kind + str(self.array.dtype.itemsize))
def _oindex_get(self, key):
return np.asarray(self.array.oindex[key], dtype=self.dtype)
def _vindex_get(self, key):
return np.asarray(self.array.vindex[key], dtype=self.dtype)
def __getitem__(self, key) -> np.ndarray:
return np.asarray(self.array[key], dtype=self.dtype)
class BoolTypeArray(indexing.ExplicitlyIndexedNDArrayMixin):
"""Decode arrays on the fly from integer to boolean datatype
This is useful for decoding boolean arrays from integer typed netCDF
variables.
>>> x = np.array([1, 0, 1, 1, 0], dtype="i1")
>>> x.dtype
dtype('int8')
>>> BoolTypeArray(x).dtype
dtype('bool')
>>> indexer = indexing.BasicIndexer((slice(None),))
>>> BoolTypeArray(x)[indexer].dtype
dtype('bool')
"""
__slots__ = ("array",)
def __init__(self, array) -> None:
self.array = indexing.as_indexable(array)
@property
def dtype(self) -> np.dtype:
return np.dtype("bool")
def _oindex_get(self, key):
return np.asarray(self.array.oindex[key], dtype=self.dtype)
def _vindex_get(self, key):
return np.asarray(self.array.vindex[key], dtype=self.dtype)
def __getitem__(self, key) -> np.ndarray:
return np.asarray(self.array[key], dtype=self.dtype)
def lazy_elemwise_func(array, func: Callable, dtype: np.typing.DTypeLike):
"""Lazily apply an element-wise function to an array.
Parameters
----------
array : any valid value of Variable._data
func : callable
Function to apply to indexed slices of an array. For use with dask,
this should be a pickle-able object.
dtype : coercible to np.dtype
Dtype for the result of this function.
Returns
-------
Either a dask.array.Array or _ElementwiseFunctionArray.
"""
if is_chunked_array(array):
chunkmanager = get_chunked_array_type(array)
return chunkmanager.map_blocks(func, array, dtype=dtype) # type: ignore[arg-type]
else:
return _ElementwiseFunctionArray(array, func, dtype)
def unpack_for_encoding(var: Variable) -> T_VarTuple:
return var.dims, var.data, var.attrs.copy(), var.encoding.copy()
def unpack_for_decoding(var: Variable) -> T_VarTuple:
return var.dims, var._data, var.attrs.copy(), var.encoding.copy()
def safe_setitem(dest, key: Hashable, value, name: T_Name = None):
if key in dest:
var_str = f" on variable {name!r}" if name else ""
raise ValueError(
f"failed to prevent overwriting existing key {key} in attrs{var_str}. "
"This is probably an encoding field used by xarray to describe "
"how a variable is serialized. To proceed, remove this key from "
"the variable's attributes manually."
)
dest[key] = value
def pop_to(
source: MutableMapping, dest: MutableMapping, key: Hashable, name: T_Name = None
) -> Any:
"""
A convenience function which pops a key k from source to dest.
None values are not passed on. If k already exists in dest an
error is raised.
"""
value = source.pop(key, None)
if value is not None:
safe_setitem(dest, key, value, name=name)
return value
def _apply_mask(
data: np.ndarray,
encoded_fill_values: list,
decoded_fill_value: Any,
dtype: np.typing.DTypeLike,
) -> np.ndarray:
"""Mask all matching values in a NumPy arrays."""
data = np.asarray(data, dtype=dtype)
condition = False
for fv in encoded_fill_values:
condition |= data == fv
return np.where(condition, decoded_fill_value, data)
def _is_time_like(units):
# test for time-like
if units is None:
return False
time_strings = [
"days",
"hours",
"minutes",
"seconds",
"milliseconds",
"microseconds",
"nanoseconds",
]
units = str(units)
# to prevent detecting units like `days accumulated` as time-like
# special casing for datetime-units and timedelta-units (GH-8269)
if "since" in units:
from xarray.coding.times import _unpack_netcdf_time_units
try:
_unpack_netcdf_time_units(units)
except ValueError:
return False
return True
else:
return any(tstr == units for tstr in time_strings)
def _check_fill_values(attrs, name, dtype):
"""Check _FillValue and missing_value if available.
Return dictionary with raw fill values and set with encoded fill values.
Issue SerializationWarning if appropriate.
"""
raw_fill_dict = {}
[
pop_to(attrs, raw_fill_dict, attr, name=name)
for attr in ("missing_value", "_FillValue")
]
encoded_fill_values = set()
for k in list(raw_fill_dict):
v = raw_fill_dict[k]
kfill = {fv for fv in np.ravel(v) if not pd.isnull(fv)}
if not kfill and np.issubdtype(dtype, np.integer):
warnings.warn(
f"variable {name!r} has non-conforming {k!r} "
f"{v!r} defined, dropping {k!r} entirely.",
SerializationWarning,
stacklevel=3,
)
del raw_fill_dict[k]
else:
encoded_fill_values |= kfill
if len(encoded_fill_values) > 1:
warnings.warn(
f"variable {name!r} has multiple fill values "
f"{encoded_fill_values} defined, decoding all values to NaN.",
SerializationWarning,
stacklevel=3,
)
return raw_fill_dict, encoded_fill_values
def _convert_unsigned_fill_value(
name: T_Name,
data: Any,
unsigned: str,
raw_fill_value: Any,
encoded_fill_values: set,
) -> Any:
if data.dtype.kind == "i":
if unsigned == "true":
unsigned_dtype = np.dtype(f"u{data.dtype.itemsize}")
transform = partial(np.asarray, dtype=unsigned_dtype)
if raw_fill_value is not None:
new_fill = np.array(raw_fill_value, dtype=data.dtype)
encoded_fill_values.remove(raw_fill_value)
# use view here to prevent OverflowError
encoded_fill_values.add(new_fill.view(unsigned_dtype).item())
data = lazy_elemwise_func(data, transform, unsigned_dtype)
elif data.dtype.kind == "u":
if unsigned == "false":
signed_dtype = np.dtype(f"i{data.dtype.itemsize}")
transform = partial(np.asarray, dtype=signed_dtype)
data = lazy_elemwise_func(data, transform, signed_dtype)
if raw_fill_value is not None:
new_fill = signed_dtype.type(raw_fill_value)
encoded_fill_values.remove(raw_fill_value)
encoded_fill_values.add(new_fill)
else:
warnings.warn(
f"variable {name!r} has _Unsigned attribute but is not "
"of integer type. Ignoring attribute.",
SerializationWarning,
stacklevel=3,
)
return data
def _encode_unsigned_fill_value(
name: T_Name,
fill_value: Any,
encoded_dtype: np.dtype,
) -> Any:
try:
if hasattr(fill_value, "item"):
# if numpy type, convert to python native integer to determine overflow
# otherwise numpy unsigned ints will silently cast to the signed counterpart
fill_value = fill_value.item()
# passes if provided fill value fits in encoded on-disk type
new_fill = encoded_dtype.type(fill_value)
except OverflowError:
encoded_kind_str = "signed" if encoded_dtype.kind == "i" else "unsigned"
warnings.warn(
f"variable {name!r} will be stored as {encoded_kind_str} integers "
f"but _FillValue attribute can't be represented as a "
f"{encoded_kind_str} integer.",
SerializationWarning,
stacklevel=3,
)
# user probably provided the fill as the in-memory dtype,
# convert to on-disk type to match CF standard
orig_kind = "u" if encoded_dtype.kind == "i" else "i"
orig_dtype = np.dtype(f"{orig_kind}{encoded_dtype.itemsize}")
# use view here to prevent OverflowError
new_fill = np.array(fill_value, dtype=orig_dtype).view(encoded_dtype).item()
return new_fill
class CFMaskCoder(VariableCoder):
"""Mask or unmask fill values according to CF conventions."""
def encode(self, variable: Variable, name: T_Name = None):
dims, data, attrs, encoding = unpack_for_encoding(variable)
dtype = np.dtype(encoding.get("dtype", data.dtype))
# from netCDF best practices
# https://docs.unidata.ucar.edu/nug/current/best_practices.html#bp_Unsigned-Data
# "_Unsigned = "true" to indicate that
# integer data should be treated as unsigned"
has_unsigned = encoding.get("_Unsigned") is not None
fv = encoding.get("_FillValue")
mv = encoding.get("missing_value")
fill_value = None
fv_exists = fv is not None
mv_exists = mv is not None
if not fv_exists and not mv_exists:
return variable
if fv_exists and mv_exists and not duck_array_ops.allclose_or_equiv(fv, mv):
raise ValueError(
f"Variable {name!r} has conflicting _FillValue ({fv}) and missing_value ({mv}). Cannot encode data."
)
if fv_exists:
# Ensure _FillValue is cast to same dtype as data's
encoding["_FillValue"] = (
_encode_unsigned_fill_value(name, fv, dtype)
if has_unsigned
else dtype.type(fv)
)
fill_value = pop_to(encoding, attrs, "_FillValue", name=name)
if mv_exists:
# try to use _FillValue, if it exists to align both values
# or use missing_value and ensure it's cast to same dtype as data's
encoding["missing_value"] = attrs.get(
"_FillValue",
(
_encode_unsigned_fill_value(name, mv, dtype)
if has_unsigned
else dtype.type(mv)
),
)
fill_value = pop_to(encoding, attrs, "missing_value", name=name)
# apply fillna
if fill_value is not None and not pd.isnull(fill_value):
# special case DateTime to properly handle NaT
if _is_time_like(attrs.get("units")) and data.dtype.kind in "iu":
data = duck_array_ops.where(
data != np.iinfo(np.int64).min, data, fill_value
)
else:
data = duck_array_ops.fillna(data, fill_value)
if fill_value is not None and has_unsigned:
pop_to(encoding, attrs, "_Unsigned")
# XXX: Is this actually needed? Doesn't the backend handle this?
data = duck_array_ops.astype(duck_array_ops.around(data), dtype)
attrs["_FillValue"] = fill_value
return Variable(dims, data, attrs, encoding, fastpath=True)
def decode(self, variable: Variable, name: T_Name = None):
raw_fill_dict, encoded_fill_values = _check_fill_values(
variable.attrs, name, variable.dtype
)
if "_Unsigned" not in variable.attrs and not raw_fill_dict:
return variable
dims, data, attrs, encoding = unpack_for_decoding(variable)
# Even if _Unsigned is use, retain on-disk _FillValue
[
safe_setitem(encoding, attr, value, name=name)
for attr, value in raw_fill_dict.items()
]
if "_Unsigned" in attrs:
unsigned = pop_to(attrs, encoding, "_Unsigned")
data = _convert_unsigned_fill_value(
name,
data,
unsigned,
raw_fill_dict.get("_FillValue"),
encoded_fill_values,
)
if encoded_fill_values:
# special case DateTime to properly handle NaT
dtype: np.typing.DTypeLike
decoded_fill_value: Any
if _is_time_like(attrs.get("units")) and data.dtype.kind in "iu":
dtype, decoded_fill_value = np.int64, np.iinfo(np.int64).min
else:
if "scale_factor" not in attrs and "add_offset" not in attrs:
dtype, decoded_fill_value = dtypes.maybe_promote(data.dtype)
else:
dtype, decoded_fill_value = (
_choose_float_dtype(data.dtype, attrs),
np.nan,
)
transform = partial(
_apply_mask,
encoded_fill_values=encoded_fill_values,
decoded_fill_value=decoded_fill_value,
dtype=dtype,
)
data = lazy_elemwise_func(data, transform, dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
def _scale_offset_decoding(data, scale_factor, add_offset, dtype: np.typing.DTypeLike):
data = data.astype(dtype=dtype, copy=True)
if scale_factor is not None:
data *= scale_factor
if add_offset is not None:
data += add_offset
return data
def _choose_float_dtype(
dtype: np.dtype, mapping: MutableMapping
) -> type[np.floating[Any]]:
"""Return a float dtype that can losslessly represent `dtype` values."""
# check scale/offset first to derive wanted float dtype
# see https://github.com/pydata/xarray/issues/5597#issuecomment-879561954
scale_factor = mapping.get("scale_factor")
add_offset = mapping.get("add_offset")
if scale_factor is not None or add_offset is not None:
# get the type from scale_factor/add_offset to determine
# the needed floating point type
if scale_factor is not None:
scale_type = np.dtype(type(scale_factor))
if add_offset is not None:
offset_type = np.dtype(type(add_offset))
# CF conforming, both scale_factor and add-offset are given and
# of same floating point type (float32/64)
if (
add_offset is not None
and scale_factor is not None
and offset_type == scale_type
and scale_type in [np.float32, np.float64]
):
# in case of int32 -> we need upcast to float64
# due to precision issues
if dtype.itemsize == 4 and np.issubdtype(dtype, np.integer):
return np.float64
return scale_type.type
# Not CF conforming and add_offset given:
# A scale factor is entirely safe (vanishing into the mantissa),
# but a large integer offset could lead to loss of precision.
# Sensitivity analysis can be tricky, so we just use a float64
# if there's any offset at all - better unoptimised than wrong!
if add_offset is not None:
return np.float64
# return dtype depending on given scale_factor
return scale_type.type
# If no scale_factor or add_offset is given, use some general rules.
# Keep float32 as-is. Upcast half-precision to single-precision,
# because float16 is "intended for storage but not computation"
if dtype.itemsize <= 4 and np.issubdtype(dtype, np.floating):
return np.float32
# float32 can exactly represent all integers up to 24 bits
if dtype.itemsize <= 2 and np.issubdtype(dtype, np.integer):
return np.float32
# For all other types and circumstances, we just use float64.
# Todo: with nc-complex from netcdf4-python >= 1.7.0 this is available
# (safe because eg. complex numbers are not supported in NetCDF)
return np.float64
class CFScaleOffsetCoder(VariableCoder):
"""Scale and offset variables according to CF conventions.
Follows the formula:
decode_values = encoded_values * scale_factor + add_offset
"""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
dims, data, attrs, encoding = unpack_for_encoding(variable)
if "scale_factor" in encoding or "add_offset" in encoding:
# if we have a _FillValue/masked_value we do not want to cast now
# but leave that to CFMaskCoder
dtype = data.dtype
if "_FillValue" not in encoding and "missing_value" not in encoding:
dtype = _choose_float_dtype(data.dtype, encoding)
# but still we need a copy prevent changing original data
data = duck_array_ops.astype(data, dtype=dtype, copy=True)
if "add_offset" in encoding:
data -= pop_to(encoding, attrs, "add_offset", name=name)
if "scale_factor" in encoding:
data /= pop_to(encoding, attrs, "scale_factor", name=name)
return Variable(dims, data, attrs, encoding, fastpath=True)
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
_attrs = variable.attrs
if "scale_factor" in _attrs or "add_offset" in _attrs:
dims, data, attrs, encoding = unpack_for_decoding(variable)
scale_factor = pop_to(attrs, encoding, "scale_factor", name=name)
add_offset = pop_to(attrs, encoding, "add_offset", name=name)
if np.ndim(scale_factor) > 0:
scale_factor = np.asarray(scale_factor).item()
if np.ndim(add_offset) > 0:
add_offset = np.asarray(add_offset).item()
# if we have a _FillValue/masked_value we already have the wanted
# floating point dtype here (via CFMaskCoder), so no check is necessary
# only check in other cases
dtype = data.dtype
if "_FillValue" not in encoding and "missing_value" not in encoding:
dtype = _choose_float_dtype(dtype, encoding)
transform = partial(
_scale_offset_decoding,
scale_factor=scale_factor,
add_offset=add_offset,
dtype=dtype,
)
data = lazy_elemwise_func(data, transform, dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
class DefaultFillvalueCoder(VariableCoder):
"""Encode default _FillValue if needed."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
dims, data, attrs, encoding = unpack_for_encoding(variable)
# make NaN the fill value for float types
if (
"_FillValue" not in attrs
and "_FillValue" not in encoding
and np.issubdtype(variable.dtype, np.floating)
):
attrs["_FillValue"] = variable.dtype.type(np.nan)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
raise NotImplementedError()
class BooleanCoder(VariableCoder):
"""Code boolean values."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if (
(variable.dtype == bool)
and ("dtype" not in variable.encoding)
and ("dtype" not in variable.attrs)
):
dims, data, attrs, encoding = unpack_for_encoding(variable)
attrs["dtype"] = "bool"
data = duck_array_ops.astype(data, dtype="i1", copy=True)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
if variable.attrs.get("dtype", False) == "bool":
dims, data, attrs, encoding = unpack_for_decoding(variable)
# overwrite (!) dtype in encoding, and remove from attrs
# needed for correct subsequent encoding
encoding["dtype"] = attrs.pop("dtype")
data = BoolTypeArray(data)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
class EndianCoder(VariableCoder):
"""Decode Endianness to native."""
def encode(self):
raise NotImplementedError()
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
dims, data, attrs, encoding = unpack_for_decoding(variable)
if not data.dtype.isnative:
data = NativeEndiannessArray(data)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
class NonStringCoder(VariableCoder):
"""Encode NonString variables if dtypes differ."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if "dtype" in variable.encoding and variable.encoding["dtype"] not in (
"S1",
str,
):
dims, data, attrs, encoding = unpack_for_encoding(variable)
dtype = np.dtype(encoding.pop("dtype"))
if dtype != variable.dtype:
if np.issubdtype(dtype, np.integer):
if (
np.issubdtype(variable.dtype, np.floating)
and "_FillValue" not in variable.attrs
and "missing_value" not in variable.attrs
):
warnings.warn(
f"saving variable {name} with floating "
"point data as an integer dtype without "
"any _FillValue to use for NaNs",
SerializationWarning,
stacklevel=10,
)
data = duck_array_ops.round(data)
data = duck_array_ops.astype(data, dtype=dtype)
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self):
raise NotImplementedError()
class ObjectVLenStringCoder(VariableCoder):
def encode(self):
raise NotImplementedError
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
if variable.dtype.kind == "O" and variable.encoding.get("dtype", False) is str:
variable = variable.astype(variable.encoding["dtype"])
return variable
else:
return variable
class Numpy2StringDTypeCoder(VariableCoder):
# Convert Numpy 2 StringDType arrays to object arrays for backwards compatibility
# TODO: remove this if / when we decide to allow StringDType arrays in Xarray
def encode(self):
raise NotImplementedError
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
if variable.dtype.kind == "T":
return variable.astype(object)
else:
return variable
class NativeEnumCoder(VariableCoder):
"""Encode Enum into variable dtype metadata."""
def encode(self, variable: Variable, name: T_Name = None) -> Variable:
if (
"dtype" in variable.encoding
and np.dtype(variable.encoding["dtype"]).metadata
and "enum" in variable.encoding["dtype"].metadata
):
dims, data, attrs, encoding = unpack_for_encoding(variable)
data = data.astype(dtype=variable.encoding.pop("dtype"))
return Variable(dims, data, attrs, encoding, fastpath=True)
else:
return variable
def decode(self, variable: Variable, name: T_Name = None) -> Variable:
raise NotImplementedError()