CCR/.venv/lib/python3.12/site-packages/xarray/plot/dataarray_plot.py

2462 lines
85 KiB
Python

from __future__ import annotations
import functools
import warnings
from collections.abc import Callable, Hashable, Iterable, MutableMapping
from typing import TYPE_CHECKING, Any, Literal, Union, cast, overload
import numpy as np
import pandas as pd
from xarray.core.alignment import broadcast
from xarray.core.concat import concat
from xarray.core.utils import attempt_import
from xarray.plot.facetgrid import _easy_facetgrid
from xarray.plot.utils import (
_LINEWIDTH_RANGE,
_MARKERSIZE_RANGE,
_add_colorbar,
_add_legend,
_assert_valid_xy,
_determine_guide,
_ensure_plottable,
_guess_coords_to_plot,
_infer_interval_breaks,
_infer_xy_labels,
_Normalize,
_process_cmap_cbar_kwargs,
_rescale_imshow_rgb,
_resolve_intervals_1dplot,
_resolve_intervals_2dplot,
_set_concise_date,
_update_axes,
get_axis,
label_from_attrs,
)
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.collections import PathCollection, QuadMesh
from matplotlib.colors import Colormap, Normalize
from matplotlib.container import BarContainer
from matplotlib.contour import QuadContourSet
from matplotlib.image import AxesImage
from matplotlib.patches import Polygon
from mpl_toolkits.mplot3d.art3d import Line3D, Poly3DCollection
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.types import (
AspectOptions,
ExtendOptions,
HueStyleOptions,
ScaleOptions,
T_DataArray,
)
from xarray.plot.facetgrid import FacetGrid
_styles: dict[str, Any] = {
# Add a white border to make it easier seeing overlapping markers:
"scatter.edgecolors": "w",
}
def _infer_line_data(
darray: DataArray, x: Hashable | None, y: Hashable | None, hue: Hashable | None
) -> tuple[DataArray, DataArray, DataArray | None, str]:
ndims = len(darray.dims)
if x is not None and y is not None:
raise ValueError("Cannot specify both x and y kwargs for line plots.")
if x is not None:
_assert_valid_xy(darray, x, "x")
if y is not None:
_assert_valid_xy(darray, y, "y")
if ndims == 1:
huename = None
hueplt = None
huelabel = ""
if x is not None:
xplt = darray[x]
yplt = darray
elif y is not None:
xplt = darray
yplt = darray[y]
else: # Both x & y are None
dim = darray.dims[0]
xplt = darray[dim]
yplt = darray
else:
if x is None and y is None and hue is None:
raise ValueError("For 2D inputs, please specify either hue, x or y.")
if y is None:
if hue is not None:
_assert_valid_xy(darray, hue, "hue")
xname, huename = _infer_xy_labels(darray=darray, x=x, y=hue)
xplt = darray[xname]
if xplt.ndim > 1:
if huename in darray.dims:
otherindex = 1 if darray.dims.index(huename) == 0 else 0
otherdim = darray.dims[otherindex]
yplt = darray.transpose(otherdim, huename, transpose_coords=False)
xplt = xplt.transpose(otherdim, huename, transpose_coords=False)
else:
raise ValueError(
"For 2D inputs, hue must be a dimension"
" i.e. one of " + repr(darray.dims)
)
else:
(xdim,) = darray[xname].dims
(huedim,) = darray[huename].dims
yplt = darray.transpose(xdim, huedim)
else:
yname, huename = _infer_xy_labels(darray=darray, x=y, y=hue)
yplt = darray[yname]
if yplt.ndim > 1:
if huename in darray.dims:
otherindex = 1 if darray.dims.index(huename) == 0 else 0
otherdim = darray.dims[otherindex]
xplt = darray.transpose(otherdim, huename, transpose_coords=False)
yplt = yplt.transpose(otherdim, huename, transpose_coords=False)
else:
raise ValueError(
"For 2D inputs, hue must be a dimension"
" i.e. one of " + repr(darray.dims)
)
else:
(ydim,) = darray[yname].dims
(huedim,) = darray[huename].dims
xplt = darray.transpose(ydim, huedim)
huelabel = label_from_attrs(darray[huename])
hueplt = darray[huename]
return xplt, yplt, hueplt, huelabel
def _prepare_plot1d_data(
darray: T_DataArray,
coords_to_plot: MutableMapping[str, Hashable],
plotfunc_name: str | None = None,
_is_facetgrid: bool = False,
) -> dict[str, T_DataArray]:
"""
Prepare data for usage with plt.scatter.
Parameters
----------
darray : T_DataArray
Base DataArray.
coords_to_plot : MutableMapping[str, Hashable]
Coords that will be plotted.
plotfunc_name : str | None
Name of the plotting function that will be used.
Returns
-------
plts : dict[str, T_DataArray]
Dict of DataArrays that will be sent to matplotlib.
Examples
--------
>>> # Make sure int coords are plotted:
>>> a = xr.DataArray(
... data=[1, 2],
... coords={1: ("x", [0, 1], {"units": "s"})},
... dims=("x",),
... name="a",
... )
>>> plts = xr.plot.dataarray_plot._prepare_plot1d_data(
... a, coords_to_plot={"x": 1, "z": None, "hue": None, "size": None}
... )
>>> # Check which coords to plot:
>>> print({k: v.name for k, v in plts.items()})
{'y': 'a', 'x': 1}
"""
# If there are more than 1 dimension in the array than stack all the
# dimensions so the plotter can plot anything:
if darray.ndim > 1:
# When stacking dims the lines will continue connecting. For floats
# this can be solved by adding a nan element in between the flattening
# points:
dims_T = []
if np.issubdtype(darray.dtype, np.floating):
for v in ["z", "x"]:
dim = coords_to_plot.get(v, None)
if (dim is not None) and (dim in darray.dims):
darray_nan = np.nan * darray.isel({dim: -1})
darray = concat([darray, darray_nan], dim=dim)
dims_T.append(coords_to_plot[v])
# Lines should never connect to the same coordinate when stacked,
# transpose to avoid this as much as possible:
darray = darray.transpose(..., *dims_T)
# Array is now ready to be stacked:
darray = darray.stack(_stacked_dim=darray.dims)
# Broadcast together all the chosen variables:
plts = dict(y=darray)
plts.update(
{k: darray.coords[v] for k, v in coords_to_plot.items() if v is not None}
)
plts = dict(zip(plts.keys(), broadcast(*(plts.values())), strict=True))
return plts
# return type is Any due to the many different possibilities
def plot(
darray: DataArray,
*,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
subplot_kws: dict[str, Any] | None = None,
**kwargs: Any,
) -> Any:
"""
Default plot of DataArray using :py:mod:`matplotlib:matplotlib.pyplot`.
Calls xarray plotting function based on the dimensions of
the squeezed DataArray.
=============== ===========================
Dimensions Plotting function
=============== ===========================
1 :py:func:`xarray.plot.line`
2 :py:func:`xarray.plot.pcolormesh`
Anything else :py:func:`xarray.plot.hist`
=============== ===========================
Parameters
----------
darray : DataArray
row : Hashable or None, optional
If passed, make row faceted plots on this dimension name.
col : Hashable or None, optional
If passed, make column faceted plots on this dimension name.
col_wrap : int or None, optional
Use together with ``col`` to wrap faceted plots.
ax : matplotlib axes object, optional
Axes on which to plot. By default, use the current axes.
Mutually exclusive with ``size``, ``figsize`` and facets.
hue : Hashable or None, optional
If passed, make faceted line plots with hue on this dimension name.
subplot_kws : dict, optional
Dictionary of keyword arguments for Matplotlib subplots
(see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`).
**kwargs : optional
Additional keyword arguments for Matplotlib.
See Also
--------
xarray.DataArray.squeeze
"""
darray = darray.squeeze(
d for d, s in darray.sizes.items() if s == 1 and d not in (row, col, hue)
).compute()
plot_dims = set(darray.dims)
plot_dims.discard(row)
plot_dims.discard(col)
plot_dims.discard(hue)
ndims = len(plot_dims)
plotfunc: Callable
if ndims == 0 or darray.size == 0:
raise TypeError("No numeric data to plot.")
if ndims in (1, 2):
if row or col:
kwargs["subplot_kws"] = subplot_kws
kwargs["row"] = row
kwargs["col"] = col
kwargs["col_wrap"] = col_wrap
if ndims == 1:
plotfunc = line
kwargs["hue"] = hue
elif ndims == 2:
if hue:
plotfunc = line
kwargs["hue"] = hue
else:
plotfunc = pcolormesh
kwargs["subplot_kws"] = subplot_kws
else:
if row or col or hue:
raise ValueError(
"Only 1d and 2d plots are supported for facets in xarray. "
"See the package `Seaborn` for more options."
)
plotfunc = hist
kwargs["ax"] = ax
return plotfunc(darray, **kwargs)
@overload
def line( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
*args: Any,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
figsize: Iterable[float] | None = None,
aspect: AspectOptions = None,
size: float | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
x: Hashable | None = None,
y: Hashable | None = None,
xincrease: bool | None = None,
yincrease: bool | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
add_legend: bool = True,
_labels: bool = True,
**kwargs: Any,
) -> list[Line3D]: ...
@overload
def line(
darray: T_DataArray,
*args: Any,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
figsize: Iterable[float] | None = None,
aspect: AspectOptions = None,
size: float | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
x: Hashable | None = None,
y: Hashable | None = None,
xincrease: bool | None = None,
yincrease: bool | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
add_legend: bool = True,
_labels: bool = True,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@overload
def line(
darray: T_DataArray,
*args: Any,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
figsize: Iterable[float] | None = None,
aspect: AspectOptions = None,
size: float | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
x: Hashable | None = None,
y: Hashable | None = None,
xincrease: bool | None = None,
yincrease: bool | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
add_legend: bool = True,
_labels: bool = True,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
# This function signature should not change so that it can use
# matplotlib format strings
def line(
darray: T_DataArray,
*args: Any,
row: Hashable | None = None,
col: Hashable | None = None,
figsize: Iterable[float] | None = None,
aspect: AspectOptions = None,
size: float | None = None,
ax: Axes | None = None,
hue: Hashable | None = None,
x: Hashable | None = None,
y: Hashable | None = None,
xincrease: bool | None = None,
yincrease: bool | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
add_legend: bool = True,
_labels: bool = True,
**kwargs: Any,
) -> list[Line3D] | FacetGrid[T_DataArray]:
"""
Line plot of DataArray values.
Wraps :py:func:`matplotlib:matplotlib.pyplot.plot`.
Parameters
----------
darray : DataArray
Either 1D or 2D. If 2D, one of ``hue``, ``x`` or ``y`` must be provided.
row : Hashable, optional
If passed, make row faceted plots on this dimension name.
col : Hashable, optional
If passed, make column faceted plots on this dimension name.
figsize : tuple, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : "auto", "equal", scalar or None, optional
Aspect ratio of plot, so that ``aspect * size`` gives the *width* in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size:
*height* (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axes on which to plot. By default, the current is used.
Mutually exclusive with ``size`` and ``figsize``.
hue : Hashable, optional
Dimension or coordinate for which you want multiple lines plotted.
If plotting against a 2D coordinate, ``hue`` must be a dimension.
x, y : Hashable, optional
Dimension, coordinate or multi-index level for *x*, *y* axis.
Only one of these may be specified.
The other will be used for values from the DataArray on which this
plot method is called.
xincrease : bool or None, optional
Should the values on the *x* axis be increasing from left to right?
if ``None``, use the default for the Matplotlib function.
yincrease : bool or None, optional
Should the values on the *y* axis be increasing from top to bottom?
if ``None``, use the default for the Matplotlib function.
xscale, yscale : {'linear', 'symlog', 'log', 'logit'}, optional
Specifies scaling for the *x*- and *y*-axis, respectively.
xticks, yticks : array-like, optional
Specify tick locations for *x*- and *y*-axis.
xlim, ylim : tuple[float, float], optional
Specify *x*- and *y*-axis limits.
add_legend : bool, default: True
Add legend with *y* axis coordinates (2D inputs only).
*args, **kwargs : optional
Additional arguments to :py:func:`matplotlib:matplotlib.pyplot.plot`.
Returns
-------
primitive : list of Line3D or FacetGrid
When either col or row is given, returns a FacetGrid, otherwise
a list of matplotlib Line3D objects.
"""
# Handle facetgrids first
if row or col:
allargs = locals().copy()
allargs.update(allargs.pop("kwargs"))
allargs.pop("darray")
return _easy_facetgrid(darray, line, kind="line", **allargs)
ndims = len(darray.dims)
if ndims == 0 or darray.size == 0:
# TypeError to be consistent with pandas
raise TypeError("No numeric data to plot.")
if ndims > 2:
raise ValueError(
"Line plots are for 1- or 2-dimensional DataArrays. "
f"Passed DataArray has {ndims} "
"dimensions"
)
# The allargs dict passed to _easy_facetgrid above contains args
if args == ():
args = kwargs.pop("args", ())
else:
assert "args" not in kwargs
ax = get_axis(figsize, size, aspect, ax)
xplt, yplt, hueplt, hue_label = _infer_line_data(darray, x, y, hue)
# Remove pd.Intervals if contained in xplt.values and/or yplt.values.
xplt_val, yplt_val, x_suffix, y_suffix, kwargs = _resolve_intervals_1dplot(
xplt.to_numpy(), yplt.to_numpy(), kwargs
)
xlabel = label_from_attrs(xplt, extra=x_suffix)
ylabel = label_from_attrs(yplt, extra=y_suffix)
_ensure_plottable(xplt_val, yplt_val)
primitive = ax.plot(xplt_val, yplt_val, *args, **kwargs)
if _labels:
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
ax.set_title(darray._title_for_slice())
if darray.ndim == 2 and add_legend:
assert hueplt is not None
ax.legend(handles=primitive, labels=list(hueplt.to_numpy()), title=hue_label)
if np.issubdtype(xplt.dtype, np.datetime64):
_set_concise_date(ax, axis="x")
_update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim)
return primitive
@overload
def step( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
*args: Any,
where: Literal["pre", "post", "mid"] = "pre",
drawstyle: str | None = None,
ds: str | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
**kwargs: Any,
) -> list[Line3D]: ...
@overload
def step(
darray: DataArray,
*args: Any,
where: Literal["pre", "post", "mid"] = "pre",
drawstyle: str | None = None,
ds: str | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
**kwargs: Any,
) -> FacetGrid[DataArray]: ...
@overload
def step(
darray: DataArray,
*args: Any,
where: Literal["pre", "post", "mid"] = "pre",
drawstyle: str | None = None,
ds: str | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
**kwargs: Any,
) -> FacetGrid[DataArray]: ...
def step(
darray: DataArray,
*args: Any,
where: Literal["pre", "post", "mid"] = "pre",
drawstyle: str | None = None,
ds: str | None = None,
row: Hashable | None = None,
col: Hashable | None = None,
**kwargs: Any,
) -> list[Line3D] | FacetGrid[DataArray]:
"""
Step plot of DataArray values.
Similar to :py:func:`matplotlib:matplotlib.pyplot.step`.
Parameters
----------
where : {'pre', 'post', 'mid'}, default: 'pre'
Define where the steps should be placed:
- ``'pre'``: The y value is continued constantly to the left from
every *x* position, i.e. the interval ``(x[i-1], x[i]]`` has the
value ``y[i]``.
- ``'post'``: The y value is continued constantly to the right from
every *x* position, i.e. the interval ``[x[i], x[i+1])`` has the
value ``y[i]``.
- ``'mid'``: Steps occur half-way between the *x* positions.
Note that this parameter is ignored if one coordinate consists of
:py:class:`pandas.Interval` values, e.g. as a result of
:py:func:`xarray.Dataset.groupby_bins`. In this case, the actual
boundaries of the interval are used.
drawstyle, ds : str or None, optional
Additional drawstyle. Only use one of drawstyle and ds.
row : Hashable, optional
If passed, make row faceted plots on this dimension name.
col : Hashable, optional
If passed, make column faceted plots on this dimension name.
*args, **kwargs : optional
Additional arguments for :py:func:`xarray.plot.line`.
Returns
-------
primitive : list of Line3D or FacetGrid
When either col or row is given, returns a FacetGrid, otherwise
a list of matplotlib Line3D objects.
"""
if where not in {"pre", "post", "mid"}:
raise ValueError("'where' argument to step must be 'pre', 'post' or 'mid'")
if ds is not None:
if drawstyle is None:
drawstyle = ds
else:
raise TypeError("ds and drawstyle are mutually exclusive")
if drawstyle is None:
drawstyle = ""
drawstyle = "steps-" + where + drawstyle
return line(darray, *args, drawstyle=drawstyle, col=col, row=row, **kwargs)
def hist(
darray: DataArray,
*args: Any,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
xincrease: bool | None = None,
yincrease: bool | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
**kwargs: Any,
) -> tuple[np.ndarray, np.ndarray, BarContainer | Polygon]:
"""
Histogram of DataArray.
Wraps :py:func:`matplotlib:matplotlib.pyplot.hist`.
Plots *N*-dimensional arrays by first flattening the array.
Parameters
----------
darray : DataArray
Can have any number of dimensions.
figsize : Iterable of float, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
aspect : "auto", "equal", scalar or None, optional
Aspect ratio of plot, so that ``aspect * size`` gives the *width* in
inches. Only used if a ``size`` is provided.
size : scalar, optional
If provided, create a new figure for the plot with the given size:
*height* (in inches) of each plot. See also: ``aspect``.
ax : matplotlib axes object, optional
Axes on which to plot. By default, use the current axes.
Mutually exclusive with ``size`` and ``figsize``.
xincrease : bool or None, optional
Should the values on the *x* axis be increasing from left to right?
if ``None``, use the default for the Matplotlib function.
yincrease : bool or None, optional
Should the values on the *y* axis be increasing from top to bottom?
if ``None``, use the default for the Matplotlib function.
xscale, yscale : {'linear', 'symlog', 'log', 'logit'}, optional
Specifies scaling for the *x*- and *y*-axis, respectively.
xticks, yticks : array-like, optional
Specify tick locations for *x*- and *y*-axis.
xlim, ylim : tuple[float, float], optional
Specify *x*- and *y*-axis limits.
**kwargs : optional
Additional keyword arguments to :py:func:`matplotlib:matplotlib.pyplot.hist`.
"""
assert len(args) == 0
if darray.ndim == 0 or darray.size == 0:
# TypeError to be consistent with pandas
raise TypeError("No numeric data to plot.")
ax = get_axis(figsize, size, aspect, ax)
no_nan = np.ravel(darray.to_numpy())
no_nan = no_nan[pd.notnull(no_nan)]
n, bins, patches = cast(
tuple[np.ndarray, np.ndarray, Union["BarContainer", "Polygon"]],
ax.hist(no_nan, **kwargs),
)
ax.set_title(darray._title_for_slice())
ax.set_xlabel(label_from_attrs(darray))
_update_axes(ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim)
return n, bins, patches
def _plot1d(plotfunc):
"""Decorator for common 1d plotting logic."""
commondoc = """
Parameters
----------
darray : DataArray
Must be 2 dimensional, unless creating faceted plots.
x : Hashable or None, optional
Coordinate for x axis. If None use darray.dims[1].
y : Hashable or None, optional
Coordinate for y axis. If None use darray.dims[0].
z : Hashable or None, optional
If specified plot 3D and use this coordinate for *z* axis.
hue : Hashable or None, optional
Dimension or coordinate for which you want multiple lines plotted.
markersize: Hashable or None, optional
scatter only. Variable by which to vary size of scattered points.
linewidth: Hashable or None, optional
Variable by which to vary linewidth.
row : Hashable, optional
If passed, make row faceted plots on this dimension name.
col : Hashable, optional
If passed, make column faceted plots on this dimension name.
col_wrap : int, optional
Use together with ``col`` to wrap faceted plots
ax : matplotlib axes object, optional
If None, uses the current axis. Not applicable when using facets.
figsize : Iterable[float] or None, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
size : scalar, optional
If provided, create a new figure for the plot with the given size.
Height (in inches) of each plot. See also: ``aspect``.
aspect : "auto", "equal", scalar or None, optional
Aspect ratio of plot, so that ``aspect * size`` gives the width in
inches. Only used if a ``size`` is provided.
xincrease : bool or None, default: True
Should the values on the x axes be increasing from left to right?
if None, use the default for the matplotlib function.
yincrease : bool or None, default: True
Should the values on the y axes be increasing from top to bottom?
if None, use the default for the matplotlib function.
add_legend : bool or None, optional
If True use xarray metadata to add a legend.
add_colorbar : bool or None, optional
If True add a colorbar.
add_labels : bool or None, optional
If True use xarray metadata to label axes
add_title : bool or None, optional
If True use xarray metadata to add a title
subplot_kws : dict, optional
Dictionary of keyword arguments for matplotlib subplots. Only applies
to FacetGrid plotting.
xscale : {'linear', 'symlog', 'log', 'logit'} or None, optional
Specifies scaling for the x-axes.
yscale : {'linear', 'symlog', 'log', 'logit'} or None, optional
Specifies scaling for the y-axes.
xticks : ArrayLike or None, optional
Specify tick locations for x-axes.
yticks : ArrayLike or None, optional
Specify tick locations for y-axes.
xlim : tuple[float, float] or None, optional
Specify x-axes limits.
ylim : tuple[float, float] or None, optional
Specify y-axes limits.
cmap : matplotlib colormap name or colormap, optional
The mapping from data values to color space. Either a
Matplotlib colormap name or object. If not provided, this will
be either ``'viridis'`` (if the function infers a sequential
dataset) or ``'RdBu_r'`` (if the function infers a diverging
dataset).
See :doc:`Choosing Colormaps in Matplotlib <matplotlib:users/explain/colors/colormaps>`
for more information.
If *seaborn* is installed, ``cmap`` may also be a
`seaborn color palette <https://seaborn.pydata.org/tutorial/color_palettes.html>`_.
Note: if ``cmap`` is a seaborn color palette,
``levels`` must also be specified.
vmin : float or None, optional
Lower value to anchor the colormap, otherwise it is inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting `vmin` or `vmax` will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
vmax : float or None, optional
Upper value to anchor the colormap, otherwise it is inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting `vmin` or `vmax` will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
norm : matplotlib.colors.Normalize, optional
If ``norm`` has ``vmin`` or ``vmax`` specified, the corresponding
kwarg must be ``None``.
extend : {'neither', 'both', 'min', 'max'}, optional
How to draw arrows extending the colorbar beyond its limits. If not
provided, ``extend`` is inferred from ``vmin``, ``vmax`` and the data limits.
levels : int or array-like, optional
Split the colormap (``cmap``) into discrete color intervals. If an integer
is provided, "nice" levels are chosen based on the data range: this can
imply that the final number of levels is not exactly the expected one.
Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to
setting ``levels=np.linspace(vmin, vmax, N)``.
**kwargs : optional
Additional arguments to wrapped matplotlib function
Returns
-------
artist :
The same type of primitive artist that the wrapped matplotlib
function returns
"""
# Build on the original docstring
plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}"
@functools.wraps(
plotfunc, assigned=("__module__", "__name__", "__qualname__", "__doc__")
)
def newplotfunc(
darray: DataArray,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
ax: Axes | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs,
) -> Any:
# All 1d plots in xarray share this function signature.
# Method signature below should be consistent.
if TYPE_CHECKING:
import matplotlib.pyplot as plt
else:
plt = attempt_import("matplotlib.pyplot")
if subplot_kws is None:
subplot_kws = dict()
# Handle facetgrids first
if row or col:
if z is not None:
subplot_kws.update(projection="3d")
allargs = locals().copy()
allargs.update(allargs.pop("kwargs"))
allargs.pop("darray")
allargs.pop("plt")
allargs["plotfunc"] = globals()[plotfunc.__name__]
return _easy_facetgrid(darray, kind="plot1d", **allargs)
if darray.ndim == 0 or darray.size == 0:
# TypeError to be consistent with pandas
raise TypeError("No numeric data to plot.")
# The allargs dict passed to _easy_facetgrid above contains args
if args == ():
args = kwargs.pop("args", ())
if args:
assert "args" not in kwargs
# TODO: Deprecated since 2022.10:
msg = "Using positional arguments is deprecated for plot methods, use keyword arguments instead."
assert x is None
x = args[0]
if len(args) > 1:
assert y is None
y = args[1]
if len(args) > 2:
assert z is None
z = args[2]
if len(args) > 3:
assert hue is None
hue = args[3]
if len(args) > 4:
raise ValueError(msg)
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
del args
if hue_style is not None:
# TODO: Not used since 2022.10. Deprecated since 2023.07.
warnings.warn(
(
"hue_style is no longer used for plot1d plots "
"and the argument will eventually be removed. "
"Convert numbers to string for a discrete hue "
"and use add_legend or add_colorbar to control which guide to display."
),
DeprecationWarning,
stacklevel=2,
)
_is_facetgrid = kwargs.pop("_is_facetgrid", False)
if plotfunc.__name__ == "scatter":
size_ = kwargs.pop("_size", markersize)
size_r = _MARKERSIZE_RANGE
# Remove any nulls, .where(m, drop=True) doesn't work when m is
# a dask array, so load the array to memory.
# It will have to be loaded to memory at some point anyway:
darray = darray.compute()
darray = darray.where(darray.notnull(), drop=True)
else:
size_ = kwargs.pop("_size", linewidth)
size_r = _LINEWIDTH_RANGE
# Get data to plot:
coords_to_plot: MutableMapping[str, Hashable | None] = dict(
x=x, z=z, hue=hue, size=size_
)
if not _is_facetgrid:
# Guess what coords to use if some of the values in coords_to_plot are None:
coords_to_plot = _guess_coords_to_plot(darray, coords_to_plot, kwargs)
plts = _prepare_plot1d_data(darray, coords_to_plot, plotfunc.__name__)
xplt = plts.pop("x", None)
yplt = plts.pop("y", None)
zplt = plts.pop("z", None)
kwargs.update(zplt=zplt)
hueplt = plts.pop("hue", None)
sizeplt = plts.pop("size", None)
# Handle size and hue:
hueplt_norm = _Normalize(data=hueplt)
kwargs.update(hueplt=hueplt_norm.values)
sizeplt_norm = _Normalize(
data=sizeplt, width=size_r, _is_facetgrid=_is_facetgrid
)
kwargs.update(sizeplt=sizeplt_norm.values)
cmap_params_subset = kwargs.pop("cmap_params_subset", {})
cbar_kwargs = kwargs.pop("cbar_kwargs", {})
if hueplt_norm.data is not None:
if not hueplt_norm.data_is_numeric:
# Map hue values back to its original value:
cbar_kwargs.update(format=hueplt_norm.format, ticks=hueplt_norm.ticks)
levels = kwargs.get("levels", hueplt_norm.levels)
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
plotfunc,
cast("DataArray", hueplt_norm.values).data,
**locals(),
)
# subset that can be passed to scatter, hist2d
if not cmap_params_subset:
ckw = {vv: cmap_params[vv] for vv in ("vmin", "vmax", "norm", "cmap")}
cmap_params_subset.update(**ckw)
with plt.rc_context(_styles):
if z is not None:
import mpl_toolkits
if ax is None:
subplot_kws.update(projection="3d")
ax = get_axis(figsize, size, aspect, ax, **subplot_kws)
assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D)
# Using 30, 30 minimizes rotation of the plot. Making it easier to
# build on your intuition from 2D plots:
ax.view_init(azim=30, elev=30, vertical_axis="y")
else:
ax = get_axis(figsize, size, aspect, ax, **subplot_kws)
primitive = plotfunc(
xplt,
yplt,
ax=ax,
add_labels=add_labels,
**cmap_params_subset,
**kwargs,
)
if np.any(np.asarray(add_labels)) and add_title:
ax.set_title(darray._title_for_slice())
add_colorbar_, add_legend_ = _determine_guide(
hueplt_norm,
sizeplt_norm,
add_colorbar,
add_legend,
plotfunc_name=plotfunc.__name__,
)
if add_colorbar_:
if "label" not in cbar_kwargs:
cbar_kwargs["label"] = label_from_attrs(hueplt_norm.data)
_add_colorbar(
primitive, ax, kwargs.get("cbar_ax"), cbar_kwargs, cmap_params
)
if add_legend_:
if plotfunc.__name__ in ["scatter", "line"]:
_add_legend(
(
hueplt_norm
if add_legend or not add_colorbar_
else _Normalize(None)
),
sizeplt_norm,
primitive,
legend_ax=ax,
plotfunc=plotfunc.__name__,
)
else:
hueplt_norm_values: list[np.ndarray | None]
if hueplt_norm.data is not None:
hueplt_norm_values = list(hueplt_norm.data.to_numpy())
else:
hueplt_norm_values = [hueplt_norm.data]
if plotfunc.__name__ == "hist":
ax.legend(
handles=primitive[-1],
labels=hueplt_norm_values,
title=label_from_attrs(hueplt_norm.data),
)
else:
ax.legend(
handles=primitive,
labels=hueplt_norm_values,
title=label_from_attrs(hueplt_norm.data),
)
_update_axes(
ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim
)
return primitive
# we want to actually expose the signature of newplotfunc
# and not the copied **kwargs from the plotfunc which
# functools.wraps adds, so delete the wrapped attr
del newplotfunc.__wrapped__
return newplotfunc
def _add_labels(
add_labels: bool | Iterable[bool],
darrays: Iterable[DataArray | None],
suffixes: Iterable[str],
ax: Axes,
) -> None:
"""Set x, y, z labels."""
add_labels = [add_labels] * 3 if isinstance(add_labels, bool) else add_labels
axes: tuple[Literal["x", "y", "z"], ...] = ("x", "y", "z")
for axis, add_label, darray, suffix in zip(
axes, add_labels, darrays, suffixes, strict=True
):
if darray is None:
continue
if add_label:
label = label_from_attrs(darray, extra=suffix)
if label is not None:
getattr(ax, f"set_{axis}label")(label)
if np.issubdtype(darray.dtype, np.datetime64):
_set_concise_date(ax, axis=axis)
@overload
def scatter( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs,
) -> PathCollection: ...
@overload
def scatter(
darray: T_DataArray,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs,
) -> FacetGrid[T_DataArray]: ...
@overload
def scatter(
darray: T_DataArray,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
z: Hashable | None = None,
hue: Hashable | None = None,
hue_style: HueStyleOptions = None,
markersize: Hashable | None = None,
linewidth: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_legend: bool | None = None,
add_colorbar: bool | None = None,
add_labels: bool | Iterable[bool] = True,
add_title: bool = True,
subplot_kws: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
cmap: str | Colormap | None = None,
vmin: float | None = None,
vmax: float | None = None,
norm: Normalize | None = None,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
**kwargs,
) -> FacetGrid[T_DataArray]: ...
@_plot1d
def scatter(
xplt: DataArray | None,
yplt: DataArray | None,
ax: Axes,
add_labels: bool | Iterable[bool] = True,
**kwargs,
) -> PathCollection:
"""Scatter variables against each other.
Wraps :py:func:`matplotlib:matplotlib.pyplot.scatter`.
"""
if "u" in kwargs or "v" in kwargs:
raise ValueError("u, v are not allowed in scatter plots.")
zplt: DataArray | None = kwargs.pop("zplt", None)
hueplt: DataArray | None = kwargs.pop("hueplt", None)
sizeplt: DataArray | None = kwargs.pop("sizeplt", None)
if hueplt is not None:
kwargs.update(c=hueplt.to_numpy().ravel())
if sizeplt is not None:
kwargs.update(s=sizeplt.to_numpy().ravel())
plts_or_none = (xplt, yplt, zplt)
_add_labels(add_labels, plts_or_none, ("", "", ""), ax)
xplt_np = None if xplt is None else xplt.to_numpy().ravel()
yplt_np = None if yplt is None else yplt.to_numpy().ravel()
zplt_np = None if zplt is None else zplt.to_numpy().ravel()
plts_np = tuple(p for p in (xplt_np, yplt_np, zplt_np) if p is not None)
if len(plts_np) == 3:
import mpl_toolkits
assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D)
return ax.scatter(xplt_np, yplt_np, zplt_np, **kwargs)
if len(plts_np) == 2:
return ax.scatter(plts_np[0], plts_np[1], **kwargs)
raise ValueError("At least two variables required for a scatter plot.")
def _plot2d(plotfunc):
"""Decorator for common 2d plotting logic."""
commondoc = """
Parameters
----------
darray : DataArray
Must be two-dimensional, unless creating faceted plots.
x : Hashable or None, optional
Coordinate for *x* axis. If ``None``, use ``darray.dims[1]``.
y : Hashable or None, optional
Coordinate for *y* axis. If ``None``, use ``darray.dims[0]``.
figsize : Iterable or float or None, optional
A tuple (width, height) of the figure in inches.
Mutually exclusive with ``size`` and ``ax``.
size : scalar, optional
If provided, create a new figure for the plot with the given size:
*height* (in inches) of each plot. See also: ``aspect``.
aspect : "auto", "equal", scalar or None, optional
Aspect ratio of plot, so that ``aspect * size`` gives the *width* in
inches. Only used if a ``size`` is provided.
ax : matplotlib axes object, optional
Axes on which to plot. By default, use the current axes.
Mutually exclusive with ``size`` and ``figsize``.
row : Hashable or None, optional
If passed, make row faceted plots on this dimension name.
col : Hashable or None, optional
If passed, make column faceted plots on this dimension name.
col_wrap : int, optional
Use together with ``col`` to wrap faceted plots.
xincrease : None, True, or False, optional
Should the values on the *x* axis be increasing from left to right?
If ``None``, use the default for the Matplotlib function.
yincrease : None, True, or False, optional
Should the values on the *y* axis be increasing from top to bottom?
If ``None``, use the default for the Matplotlib function.
add_colorbar : bool, optional
Add colorbar to axes.
add_labels : bool, optional
Use xarray metadata to label axes.
vmin : float or None, optional
Lower value to anchor the colormap, otherwise it is inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting `vmin` or `vmax` will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
vmax : float or None, optional
Upper value to anchor the colormap, otherwise it is inferred from the
data and other keyword arguments. When a diverging dataset is inferred,
setting `vmin` or `vmax` will fix the other by symmetry around
``center``. Setting both values prevents use of a diverging colormap.
If discrete levels are provided as an explicit list, both of these
values are ignored.
cmap : matplotlib colormap name or colormap, optional
The mapping from data values to color space. If not provided, this
will be either be ``'viridis'`` (if the function infers a sequential
dataset) or ``'RdBu_r'`` (if the function infers a diverging dataset).
See :doc:`Choosing Colormaps in Matplotlib <matplotlib:users/explain/colors/colormaps>`
for more information.
If *seaborn* is installed, ``cmap`` may also be a
`seaborn color palette <https://seaborn.pydata.org/tutorial/color_palettes.html>`_.
Note: if ``cmap`` is a seaborn color palette and the plot type
is not ``'contour'`` or ``'contourf'``, ``levels`` must also be specified.
center : float or False, optional
The value at which to center the colormap. Passing this value implies
use of a diverging colormap. Setting it to ``False`` prevents use of a
diverging colormap.
robust : bool, optional
If ``True`` and ``vmin`` or ``vmax`` are absent, the colormap range is
computed with 2nd and 98th percentiles instead of the extreme values.
extend : {'neither', 'both', 'min', 'max'}, optional
How to draw arrows extending the colorbar beyond its limits. If not
provided, ``extend`` is inferred from ``vmin``, ``vmax`` and the data limits.
levels : int or array-like, optional
Split the colormap (``cmap``) into discrete color intervals. If an integer
is provided, "nice" levels are chosen based on the data range: this can
imply that the final number of levels is not exactly the expected one.
Setting ``vmin`` and/or ``vmax`` with ``levels=N`` is equivalent to
setting ``levels=np.linspace(vmin, vmax, N)``.
infer_intervals : bool, optional
Only applies to pcolormesh. If ``True``, the coordinate intervals are
passed to pcolormesh. If ``False``, the original coordinates are used
(this can be useful for certain map projections). The default is to
always infer intervals, unless the mesh is irregular and plotted on
a map projection.
colors : str or array-like of color-like, optional
A single color or a sequence of colors. If the plot type is not ``'contour'``
or ``'contourf'``, the ``levels`` argument is required.
subplot_kws : dict, optional
Dictionary of keyword arguments for Matplotlib subplots. Only used
for 2D and faceted plots.
(see :py:meth:`matplotlib:matplotlib.figure.Figure.add_subplot`).
cbar_ax : matplotlib axes object, optional
Axes in which to draw the colorbar.
cbar_kwargs : dict, optional
Dictionary of keyword arguments to pass to the colorbar
(see :meth:`matplotlib:matplotlib.figure.Figure.colorbar`).
xscale : {'linear', 'symlog', 'log', 'logit'} or None, optional
Specifies scaling for the x-axes.
yscale : {'linear', 'symlog', 'log', 'logit'} or None, optional
Specifies scaling for the y-axes.
xticks : ArrayLike or None, optional
Specify tick locations for x-axes.
yticks : ArrayLike or None, optional
Specify tick locations for y-axes.
xlim : tuple[float, float] or None, optional
Specify x-axes limits.
ylim : tuple[float, float] or None, optional
Specify y-axes limits.
norm : matplotlib.colors.Normalize, optional
If ``norm`` has ``vmin`` or ``vmax`` specified, the corresponding
kwarg must be ``None``.
**kwargs : optional
Additional keyword arguments to wrapped Matplotlib function.
Returns
-------
artist :
The same type of primitive artist that the wrapped Matplotlib
function returns.
"""
# Build on the original docstring
plotfunc.__doc__ = f"{plotfunc.__doc__}\n{commondoc}"
@functools.wraps(
plotfunc, assigned=("__module__", "__name__", "__qualname__", "__doc__")
)
def newplotfunc(
darray: DataArray,
*args: Any,
x: Hashable | None = None,
y: Hashable | None = None,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> Any:
# All 2d plots in xarray share this function signature.
if args:
# TODO: Deprecated since 2022.10:
msg = "Using positional arguments is deprecated for plot methods, use keyword arguments instead."
assert x is None
x = args[0]
if len(args) > 1:
assert y is None
y = args[1]
if len(args) > 2:
raise ValueError(msg)
else:
warnings.warn(msg, DeprecationWarning, stacklevel=2)
del args
# Decide on a default for the colorbar before facetgrids
if add_colorbar is None:
add_colorbar = True
if plotfunc.__name__ == "contour" or (
plotfunc.__name__ == "surface" and cmap is None
):
add_colorbar = False
imshow_rgb = plotfunc.__name__ == "imshow" and darray.ndim == (
3 + (row is not None) + (col is not None)
)
if imshow_rgb:
# Don't add a colorbar when showing an image with explicit colors
add_colorbar = False
# Matplotlib does not support normalising RGB data, so do it here.
# See eg. https://github.com/matplotlib/matplotlib/pull/10220
if robust or vmax is not None or vmin is not None:
darray = _rescale_imshow_rgb(darray.as_numpy(), vmin, vmax, robust)
vmin, vmax, robust = None, None, False
if subplot_kws is None:
subplot_kws = dict()
if plotfunc.__name__ == "surface" and not kwargs.get("_is_facetgrid", False):
if ax is None:
# TODO: Importing Axes3D is no longer necessary in matplotlib >= 3.2.
# Remove when minimum requirement of matplotlib is 3.2:
from mpl_toolkits.mplot3d import Axes3D
# delete so it does not end up in locals()
del Axes3D
# Need to create a "3d" Axes instance for surface plots
subplot_kws["projection"] = "3d"
# In facet grids, shared axis labels don't make sense for surface plots
sharex = False
sharey = False
# Handle facetgrids first
if row or col:
allargs = locals().copy()
del allargs["darray"]
del allargs["imshow_rgb"]
allargs.update(allargs.pop("kwargs"))
# Need the decorated plotting function
allargs["plotfunc"] = globals()[plotfunc.__name__]
return _easy_facetgrid(darray, kind="dataarray", **allargs)
if darray.ndim == 0 or darray.size == 0:
# TypeError to be consistent with pandas
raise TypeError("No numeric data to plot.")
if (
plotfunc.__name__ == "surface"
and not kwargs.get("_is_facetgrid", False)
and ax is not None
):
import mpl_toolkits
if not isinstance(ax, mpl_toolkits.mplot3d.Axes3D):
raise ValueError(
"If ax is passed to surface(), it must be created with "
'projection="3d"'
)
rgb = kwargs.pop("rgb", None)
if rgb is not None and plotfunc.__name__ != "imshow":
raise ValueError('The "rgb" keyword is only valid for imshow()')
elif rgb is not None and not imshow_rgb:
raise ValueError(
'The "rgb" keyword is only valid for imshow()'
"with a three-dimensional array (per facet)"
)
xlab, ylab = _infer_xy_labels(
darray=darray, x=x, y=y, imshow=imshow_rgb, rgb=rgb
)
xval = darray[xlab]
yval = darray[ylab]
if xval.ndim > 1 or yval.ndim > 1 or plotfunc.__name__ == "surface":
# Passing 2d coordinate values, need to ensure they are transposed the same
# way as darray.
# Also surface plots always need 2d coordinates
xval = xval.broadcast_like(darray)
yval = yval.broadcast_like(darray)
dims = darray.dims
else:
dims = (yval.dims[0], xval.dims[0])
# May need to transpose for correct x, y labels
# xlab may be the name of a coord, we have to check for dim names
if imshow_rgb:
# For RGB[A] images, matplotlib requires the color dimension
# to be last. In Xarray the order should be unimportant, so
# we transpose to (y, x, color) to make this work.
yx_dims = (ylab, xlab)
dims = yx_dims + tuple(d for d in darray.dims if d not in yx_dims)
if dims != darray.dims:
darray = darray.transpose(*dims, transpose_coords=True)
# better to pass the ndarrays directly to plotting functions
xvalnp = xval.to_numpy()
yvalnp = yval.to_numpy()
# Pass the data as a masked ndarray too
zval = darray.to_masked_array(copy=False)
# Replace pd.Intervals if contained in xval or yval.
xplt, xlab_extra = _resolve_intervals_2dplot(xvalnp, plotfunc.__name__)
yplt, ylab_extra = _resolve_intervals_2dplot(yvalnp, plotfunc.__name__)
_ensure_plottable(xplt, yplt, zval)
cmap_params, cbar_kwargs = _process_cmap_cbar_kwargs(
plotfunc,
zval.data,
**locals(),
_is_facetgrid=kwargs.pop("_is_facetgrid", False),
)
if "contour" in plotfunc.__name__:
# extend is a keyword argument only for contour and contourf, but
# passing it to the colorbar is sufficient for imshow and
# pcolormesh
kwargs["extend"] = cmap_params["extend"]
kwargs["levels"] = cmap_params["levels"]
# if colors == a single color, matplotlib draws dashed negative
# contours. we lose this feature if we pass cmap and not colors
if isinstance(colors, str):
cmap_params["cmap"] = None
kwargs["colors"] = colors
if "pcolormesh" == plotfunc.__name__:
kwargs["infer_intervals"] = infer_intervals
kwargs["xscale"] = xscale
kwargs["yscale"] = yscale
if "imshow" == plotfunc.__name__ and isinstance(aspect, str):
# forbid usage of mpl strings
raise ValueError("plt.imshow's `aspect` kwarg is not available in xarray")
ax = get_axis(figsize, size, aspect, ax, **subplot_kws)
primitive = plotfunc(
xplt,
yplt,
zval,
ax=ax,
cmap=cmap_params["cmap"],
vmin=cmap_params["vmin"],
vmax=cmap_params["vmax"],
norm=cmap_params["norm"],
**kwargs,
)
# Label the plot with metadata
if add_labels:
ax.set_xlabel(label_from_attrs(darray[xlab], xlab_extra))
ax.set_ylabel(label_from_attrs(darray[ylab], ylab_extra))
ax.set_title(darray._title_for_slice())
if plotfunc.__name__ == "surface":
import mpl_toolkits
assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D)
ax.set_zlabel(label_from_attrs(darray))
if add_colorbar:
if add_labels and "label" not in cbar_kwargs:
cbar_kwargs["label"] = label_from_attrs(darray)
cbar = _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params)
elif cbar_ax is not None or cbar_kwargs:
# inform the user about keywords which aren't used
raise ValueError(
"cbar_ax and cbar_kwargs can't be used with add_colorbar=False."
)
# origin kwarg overrides yincrease
if "origin" in kwargs:
yincrease = None
_update_axes(
ax, xincrease, yincrease, xscale, yscale, xticks, yticks, xlim, ylim
)
if np.issubdtype(xplt.dtype, np.datetime64):
_set_concise_date(ax, "x")
return primitive
# we want to actually expose the signature of newplotfunc
# and not the copied **kwargs from the plotfunc which
# functools.wraps adds, so delete the wrapped attr
del newplotfunc.__wrapped__
return newplotfunc
@overload
def imshow( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> AxesImage: ...
@overload
def imshow(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@overload
def imshow(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@_plot2d
def imshow(
x: np.ndarray, y: np.ndarray, z: np.ma.core.MaskedArray, ax: Axes, **kwargs: Any
) -> AxesImage:
"""
Image plot of 2D DataArray.
Wraps :py:func:`matplotlib:matplotlib.pyplot.imshow`.
While other plot methods require the DataArray to be strictly
two-dimensional, ``imshow`` also accepts a 3D array where some
dimension can be interpreted as RGB or RGBA color channels and
allows this dimension to be specified via the kwarg ``rgb=``.
Unlike :py:func:`matplotlib:matplotlib.pyplot.imshow`, which ignores ``vmin``/``vmax``
for RGB(A) data,
xarray *will* use ``vmin`` and ``vmax`` for RGB(A) data
by applying a single scaling factor and offset to all bands.
Passing ``robust=True`` infers ``vmin`` and ``vmax``
:ref:`in the usual way <robust-plotting>`.
Additionally the y-axis is not inverted by default, you can
restore the matplotlib behavior by setting `yincrease=False`.
.. note::
This function needs uniformly spaced coordinates to
properly label the axes. Call :py:meth:`DataArray.plot` to check.
The pixels are centered on the coordinates. For example, if the coordinate
value is 3.2, then the pixels for those coordinates will be centered on 3.2.
"""
if x.ndim != 1 or y.ndim != 1:
raise ValueError(
"imshow requires 1D coordinates, try using pcolormesh or contour(f)"
)
def _center_pixels(x):
"""Center the pixels on the coordinates."""
if np.issubdtype(x.dtype, str):
# When using strings as inputs imshow converts it to
# integers. Choose extent values which puts the indices in
# in the center of the pixels:
return 0 - 0.5, len(x) - 0.5
try:
# Center the pixels assuming uniform spacing:
xstep = 0.5 * (x[1] - x[0])
except IndexError:
# Arbitrary default value, similar to matplotlib behaviour:
xstep = 0.1
return x[0] - xstep, x[-1] + xstep
# Center the pixels:
left, right = _center_pixels(x)
top, bottom = _center_pixels(y)
defaults: dict[str, Any] = {"origin": "upper", "interpolation": "nearest"}
if not hasattr(ax, "projection"):
# not for cartopy geoaxes
defaults["aspect"] = "auto"
# Allow user to override these defaults
defaults.update(kwargs)
if defaults["origin"] == "upper":
defaults["extent"] = [left, right, bottom, top]
else:
defaults["extent"] = [left, right, top, bottom]
if z.ndim == 3:
# matplotlib imshow uses black for missing data, but Xarray makes
# missing data transparent. We therefore add an alpha channel if
# there isn't one, and set it to transparent where data is masked.
if z.shape[-1] == 3:
safe_dtype = np.promote_types(z.dtype, np.uint8)
alpha = np.ma.ones(z.shape[:2] + (1,), dtype=safe_dtype)
if np.issubdtype(z.dtype, np.integer):
alpha[:] = 255
z = np.ma.concatenate((z, alpha), axis=2)
else:
z = z.copy()
z[np.any(z.mask, axis=-1), -1] = 0
primitive = ax.imshow(z, **defaults)
# If x or y are strings the ticklabels have been replaced with
# integer indices. Replace them back to strings:
for axis, v in [("x", x), ("y", y)]:
if np.issubdtype(v.dtype, str):
getattr(ax, f"set_{axis}ticks")(np.arange(len(v)))
getattr(ax, f"set_{axis}ticklabels")(v)
return primitive
@overload
def contour( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: float | None = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> QuadContourSet: ...
@overload
def contour(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@overload
def contour(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@_plot2d
def contour(
x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, **kwargs: Any
) -> QuadContourSet:
"""
Contour plot of 2D DataArray.
Wraps :py:func:`matplotlib:matplotlib.pyplot.contour`.
"""
primitive = ax.contour(x, y, z, **kwargs)
return primitive
@overload
def contourf( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> QuadContourSet: ...
@overload
def contourf(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@overload
def contourf(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@_plot2d
def contourf(
x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, **kwargs: Any
) -> QuadContourSet:
"""
Filled contour plot of 2D DataArray.
Wraps :py:func:`matplotlib:matplotlib.pyplot.contourf`.
"""
primitive = ax.contourf(x, y, z, **kwargs)
return primitive
@overload
def pcolormesh( # type: ignore[misc,unused-ignore] # None is hashable :(
darray: DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> QuadMesh: ...
@overload
def pcolormesh(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@overload
def pcolormesh(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@_plot2d
def pcolormesh(
x: np.ndarray,
y: np.ndarray,
z: np.ndarray,
ax: Axes,
xscale: ScaleOptions | None = None,
yscale: ScaleOptions | None = None,
infer_intervals=None,
**kwargs: Any,
) -> QuadMesh:
"""
Pseudocolor plot of 2D DataArray.
Wraps :py:func:`matplotlib:matplotlib.pyplot.pcolormesh`.
"""
# decide on a default for infer_intervals (GH781)
x = np.asarray(x)
if infer_intervals is None:
if hasattr(ax, "projection"):
if len(x.shape) == 1:
infer_intervals = True
else:
infer_intervals = False
else:
infer_intervals = True
if any(np.issubdtype(k.dtype, str) for k in (x, y)):
# do not infer intervals if any axis contains str ticks, see #6775
infer_intervals = False
if infer_intervals and (
(np.shape(x)[0] == np.shape(z)[1])
or ((x.ndim > 1) and (np.shape(x)[1] == np.shape(z)[1]))
):
if x.ndim == 1:
x = _infer_interval_breaks(x, check_monotonic=True, scale=xscale)
else:
# we have to infer the intervals on both axes
x = _infer_interval_breaks(x, axis=1, scale=xscale)
x = _infer_interval_breaks(x, axis=0, scale=xscale)
if infer_intervals and (np.shape(y)[0] == np.shape(z)[0]):
if y.ndim == 1:
y = _infer_interval_breaks(y, check_monotonic=True, scale=yscale)
else:
# we have to infer the intervals on both axes
y = _infer_interval_breaks(y, axis=1, scale=yscale)
y = _infer_interval_breaks(y, axis=0, scale=yscale)
ax.grid(False)
primitive = ax.pcolormesh(x, y, z, **kwargs)
# by default, pcolormesh picks "round" values for bounds
# this results in ugly looking plots with lots of surrounding whitespace
if not hasattr(ax, "projection") and x.ndim == 1 and y.ndim == 1:
# not a cartopy geoaxis
ax.set_xlim(x[0], x[-1])
ax.set_ylim(y[0], y[-1])
return primitive
@overload
def surface(
darray: DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: None = None, # no wrap -> primitive
col: None = None, # no wrap -> primitive
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> Poly3DCollection: ...
@overload
def surface(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable | None = None,
col: Hashable, # wrap -> FacetGrid
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@overload
def surface(
darray: T_DataArray,
x: Hashable | None = None,
y: Hashable | None = None,
*,
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
row: Hashable, # wrap -> FacetGrid
col: Hashable | None = None,
col_wrap: int | None = None,
xincrease: bool | None = True,
yincrease: bool | None = True,
add_colorbar: bool | None = None,
add_labels: bool = True,
vmin: float | None = None,
vmax: float | None = None,
cmap: str | Colormap | None = None,
center: float | Literal[False] | None = None,
robust: bool = False,
extend: ExtendOptions = None,
levels: ArrayLike | None = None,
infer_intervals=None,
colors: str | ArrayLike | None = None,
subplot_kws: dict[str, Any] | None = None,
cbar_ax: Axes | None = None,
cbar_kwargs: dict[str, Any] | None = None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: ArrayLike | None = None,
ylim: ArrayLike | None = None,
norm: Normalize | None = None,
**kwargs: Any,
) -> FacetGrid[T_DataArray]: ...
@_plot2d
def surface(
x: np.ndarray, y: np.ndarray, z: np.ndarray, ax: Axes, **kwargs: Any
) -> Poly3DCollection:
"""
Surface plot of 2D DataArray.
Wraps :py:meth:`matplotlib:mpl_toolkits.mplot3d.axes3d.Axes3D.plot_surface`.
"""
import mpl_toolkits
assert isinstance(ax, mpl_toolkits.mplot3d.axes3d.Axes3D)
primitive = ax.plot_surface(x, y, z, **kwargs)
return primitive