CCR/.venv/lib/python3.12/site-packages/xarray/plot/utils.py

1873 lines
60 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
import itertools
import textwrap
import warnings
from collections.abc import (
Callable,
Hashable,
Iterable,
Mapping,
MutableMapping,
Sequence,
)
from datetime import date, datetime
from inspect import getfullargspec
from typing import TYPE_CHECKING, Any, Literal, overload
import numpy as np
import pandas as pd
from xarray.core.indexes import PandasMultiIndex
from xarray.core.options import OPTIONS
from xarray.core.utils import (
attempt_import,
is_scalar,
module_available,
)
from xarray.namedarray.pycompat import DuckArrayModule
nc_time_axis_available = module_available("nc_time_axis")
try:
import cftime
except ImportError:
cftime = None
if TYPE_CHECKING:
from matplotlib.axes import Axes
from matplotlib.colors import Normalize
from matplotlib.ticker import FuncFormatter
from numpy.typing import ArrayLike
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.types import AspectOptions, ScaleOptions
try:
import matplotlib.pyplot as plt
except ImportError:
plt: Any = None # type: ignore[no-redef]
ROBUST_PERCENTILE = 2.0
# copied from seaborn
_MARKERSIZE_RANGE = (18.0, 36.0, 72.0)
_LINEWIDTH_RANGE = (1.5, 1.5, 6.0)
def _determine_extend(calc_data, vmin, vmax):
extend_min = calc_data.min() < vmin
extend_max = calc_data.max() > vmax
if extend_min and extend_max:
return "both"
elif extend_min:
return "min"
elif extend_max:
return "max"
else:
return "neither"
def _build_discrete_cmap(cmap, levels, extend, filled):
"""
Build a discrete colormap and normalization of the data.
"""
import matplotlib as mpl
if len(levels) == 1:
levels = [levels[0], levels[0]]
if not filled:
# non-filled contour plots
extend = "max"
if extend == "both":
ext_n = 2
elif extend in ["min", "max"]:
ext_n = 1
else:
ext_n = 0
n_colors = len(levels) + ext_n - 1
pal = _color_palette(cmap, n_colors)
new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend)
# copy the old cmap name, for easier testing
new_cmap.name = getattr(cmap, "name", cmap)
# copy colors to use for bad, under, and over values in case they have been
# set to non-default values
try:
# matplotlib<3.2 only uses bad color for masked values
bad = cmap(np.ma.masked_invalid([np.nan]))[0]
except TypeError:
# cmap was a str or list rather than a color-map object, so there are
# no bad, under or over values to check or copy
pass
else:
under = cmap(-np.inf)
over = cmap(np.inf)
new_cmap.set_bad(bad)
# Only update under and over if they were explicitly changed by the user
# (i.e. are different from the lowest or highest values in cmap). Otherwise
# leave unchanged so new_cmap uses its default values (its own lowest and
# highest values).
if under != cmap(0):
new_cmap.set_under(under)
if over != cmap(cmap.N - 1):
new_cmap.set_over(over)
return new_cmap, cnorm
def _color_palette(cmap, n_colors):
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
colors_i = np.linspace(0, 1.0, n_colors)
if isinstance(cmap, list | tuple):
# expand or truncate the list of colors to n_colors
cmap = list(itertools.islice(itertools.cycle(cmap), n_colors))
cmap = ListedColormap(cmap)
pal = cmap(colors_i)
elif isinstance(cmap, str):
# we have some sort of named palette
try:
# is this a matplotlib cmap?
cmap = plt.get_cmap(cmap)
pal = cmap(colors_i)
except ValueError:
# ValueError happens when mpl doesn't like a colormap, try seaborn
try:
from seaborn import color_palette
pal = color_palette(cmap, n_colors=n_colors)
except (ValueError, ImportError):
# or maybe we just got a single color as a string
cmap = ListedColormap([cmap] * n_colors)
pal = cmap(colors_i)
else:
# cmap better be a LinearSegmentedColormap (e.g. viridis)
pal = cmap(colors_i)
return pal
# _determine_cmap_params is adapted from Seaborn:
# https://github.com/mwaskom/seaborn/blob/v0.6/seaborn/matrix.py#L158
# Used under the terms of Seaborn's license, see licenses/SEABORN_LICENSE.
def _determine_cmap_params(
plot_data,
vmin=None,
vmax=None,
cmap=None,
center=None,
robust=False,
extend=None,
levels=None,
filled=True,
norm=None,
_is_facetgrid=False,
):
"""
Use some heuristics to set good defaults for colorbar and range.
Parameters
----------
plot_data : Numpy array
Doesn't handle xarray objects
Returns
-------
cmap_params : dict
Use depends on the type of the plotting function
"""
if TYPE_CHECKING:
import matplotlib as mpl
else:
mpl = attempt_import("matplotlib")
if isinstance(levels, Iterable):
levels = sorted(levels)
calc_data = np.ravel(plot_data[np.isfinite(plot_data)])
# Handle all-NaN input data gracefully
if calc_data.size == 0:
# Arbitrary default for when all values are NaN
calc_data = np.array(0.0)
# Setting center=False prevents a divergent cmap
possibly_divergent = center is not False
# Set center to 0 so math below makes sense but remember its state
center_is_none = False
if center is None:
center = 0
center_is_none = True
# Setting both vmin and vmax prevents a divergent cmap
if (vmin is not None) and (vmax is not None):
possibly_divergent = False
# Setting vmin or vmax implies linspaced levels
user_minmax = (vmin is not None) or (vmax is not None)
# vlim might be computed below
vlim = None
# save state; needed later
vmin_was_none = vmin is None
vmax_was_none = vmax is None
if vmin is None:
if robust:
vmin = np.percentile(calc_data, ROBUST_PERCENTILE)
else:
vmin = calc_data.min()
elif possibly_divergent:
vlim = abs(vmin - center)
if vmax is None:
if robust:
vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE)
else:
vmax = calc_data.max()
elif possibly_divergent:
vlim = abs(vmax - center)
if possibly_divergent:
levels_are_divergent = (
isinstance(levels, Iterable) and levels[0] * levels[-1] < 0
)
# kwargs not specific about divergent or not: infer defaults from data
divergent = (
((vmin < 0) and (vmax > 0)) or not center_is_none or levels_are_divergent
)
else:
divergent = False
# A divergent map should be symmetric around the center value
if divergent:
if vlim is None:
vlim = max(abs(vmin - center), abs(vmax - center))
vmin, vmax = -vlim, vlim
# Now add in the centering value and set the limits
vmin += center
vmax += center
# now check norm and harmonize with vmin, vmax
if norm is not None:
if norm.vmin is None:
norm.vmin = vmin
else:
if not vmin_was_none and vmin != norm.vmin:
raise ValueError("Cannot supply vmin and a norm with a different vmin.")
vmin = norm.vmin
if norm.vmax is None:
norm.vmax = vmax
else:
if not vmax_was_none and vmax != norm.vmax:
raise ValueError("Cannot supply vmax and a norm with a different vmax.")
vmax = norm.vmax
# if BoundaryNorm, then set levels
if isinstance(norm, mpl.colors.BoundaryNorm):
levels = norm.boundaries
# Choose default colormaps if not provided
if cmap is None:
if divergent:
cmap = OPTIONS["cmap_divergent"]
else:
cmap = OPTIONS["cmap_sequential"]
# Handle discrete levels
if levels is not None:
if is_scalar(levels):
if user_minmax:
levels = np.linspace(vmin, vmax, levels)
elif levels == 1:
levels = np.asarray([(vmin + vmax) / 2])
else:
# N in MaxNLocator refers to bins, not ticks
ticker = mpl.ticker.MaxNLocator(levels - 1)
levels = ticker.tick_values(vmin, vmax)
vmin, vmax = levels[0], levels[-1]
# GH3734
if vmin == vmax:
vmin, vmax = mpl.ticker.LinearLocator(2).tick_values(vmin, vmax)
if extend is None:
extend = _determine_extend(calc_data, vmin, vmax)
if (levels is not None) and (not isinstance(norm, mpl.colors.BoundaryNorm)):
cmap, newnorm = _build_discrete_cmap(cmap, levels, extend, filled)
norm = newnorm if norm is None else norm
# vmin & vmax needs to be None if norm is passed
# TODO: always return a norm with vmin and vmax
if norm is not None:
vmin = None
vmax = None
return dict(
vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=norm
)
def _infer_xy_labels_3d(
darray: DataArray | Dataset,
x: Hashable | None,
y: Hashable | None,
rgb: Hashable | None,
) -> tuple[Hashable, Hashable]:
"""
Determine x and y labels for showing RGB images.
Attempts to infer which dimension is RGB/RGBA by size and order of dims.
"""
assert rgb is None or rgb != x
assert rgb is None or rgb != y
# Start by detecting and reporting invalid combinations of arguments
assert darray.ndim == 3
not_none = [a for a in (x, y, rgb) if a is not None]
if len(set(not_none)) < len(not_none):
raise ValueError(
"Dimension names must be None or unique strings, but imshow was "
f"passed x={x!r}, y={y!r}, and rgb={rgb!r}."
)
for label in not_none:
if label not in darray.dims:
raise ValueError(f"{label!r} is not a dimension")
# Then calculate rgb dimension if certain and check validity
could_be_color = [
label
for label in darray.dims
if darray[label].size in (3, 4) and label not in (x, y)
]
if rgb is None and not could_be_color:
raise ValueError(
"A 3-dimensional array was passed to imshow(), but there is no "
"dimension that could be color. At least one dimension must be "
"of size 3 (RGB) or 4 (RGBA), and not given as x or y."
)
if rgb is None and len(could_be_color) == 1:
rgb = could_be_color[0]
if rgb is not None and darray[rgb].size not in (3, 4):
raise ValueError(
f"Cannot interpret dim {rgb!r} of size {darray[rgb].size} as RGB or RGBA."
)
# If rgb dimension is still unknown, there must be two or three dimensions
# in could_be_color. We therefore warn, and use a heuristic to break ties.
if rgb is None:
assert len(could_be_color) in (2, 3)
rgb = could_be_color[-1]
warnings.warn(
"Several dimensions of this array could be colors. Xarray "
f"will use the last possible dimension ({rgb!r}) to match "
"matplotlib.pyplot.imshow. You can pass names of x, y, "
"and/or rgb dimensions to override this guess.",
stacklevel=2,
)
assert rgb is not None
# Finally, we pick out the red slice and delegate to the 2D version:
return _infer_xy_labels(darray.isel({rgb: 0}), x, y)
def _infer_xy_labels(
darray: DataArray | Dataset,
x: Hashable | None,
y: Hashable | None,
imshow: bool = False,
rgb: Hashable | None = None,
) -> tuple[Hashable, Hashable]:
"""
Determine x and y labels. For use in _plot2d
darray must be a 2 dimensional data array, or 3d for imshow only.
"""
if (x is not None) and (x == y):
raise ValueError("x and y cannot be equal.")
if imshow and darray.ndim == 3:
return _infer_xy_labels_3d(darray, x, y, rgb)
if x is None and y is None:
if darray.ndim != 2:
raise ValueError("DataArray must be 2d")
y, x = darray.dims
elif x is None:
_assert_valid_xy(darray, y, "y")
x = darray.dims[0] if y == darray.dims[1] else darray.dims[1]
elif y is None:
_assert_valid_xy(darray, x, "x")
y = darray.dims[0] if x == darray.dims[1] else darray.dims[1]
else:
_assert_valid_xy(darray, x, "x")
_assert_valid_xy(darray, y, "y")
if darray._indexes.get(x, 1) is darray._indexes.get(y, 2):
if isinstance(darray._indexes[x], PandasMultiIndex):
raise ValueError("x and y cannot be levels of the same MultiIndex")
return x, y
# TODO: Can by used to more than x or y, rename?
def _assert_valid_xy(
darray: DataArray | Dataset, xy: Hashable | None, name: str
) -> None:
"""
make sure x and y passed to plotting functions are valid
"""
# MultiIndex cannot be plotted; no point in allowing them here
multiindex_dims = {
idx.dim
for idx in darray.xindexes.get_unique()
if isinstance(idx, PandasMultiIndex)
}
valid_xy = (set(darray.dims) | set(darray.coords)) - multiindex_dims
if (xy is not None) and (xy not in valid_xy):
valid_xy_str = "', '".join(sorted(str(v) for v in valid_xy))
raise ValueError(
f"{name} must be one of None, '{valid_xy_str}'. Received '{xy}' instead."
)
def get_axis(
figsize: Iterable[float] | None = None,
size: float | None = None,
aspect: AspectOptions = None,
ax: Axes | None = None,
**subplot_kws: Any,
) -> Axes:
from xarray.core.utils import attempt_import
if TYPE_CHECKING:
import matplotlib as mpl
import matplotlib.pyplot as plt
else:
mpl = attempt_import("matplotlib")
plt = attempt_import("matplotlib.pyplot")
if figsize is not None:
if ax is not None:
raise ValueError("cannot provide both `figsize` and `ax` arguments")
if size is not None:
raise ValueError("cannot provide both `figsize` and `size` arguments")
_, ax = plt.subplots(figsize=figsize, subplot_kw=subplot_kws)
return ax
if size is not None:
if ax is not None:
raise ValueError("cannot provide both `size` and `ax` arguments")
if aspect is None or aspect == "auto":
width, height = mpl.rcParams["figure.figsize"]
faspect = width / height
elif aspect == "equal":
faspect = 1
else:
faspect = aspect
figsize = (size * faspect, size)
_, ax = plt.subplots(figsize=figsize, subplot_kw=subplot_kws)
return ax
if aspect is not None:
raise ValueError("cannot provide `aspect` argument without `size`")
if subplot_kws and ax is not None:
raise ValueError("cannot use subplot_kws with existing ax")
if ax is None:
ax = _maybe_gca(**subplot_kws)
return ax
def _maybe_gca(**subplot_kws: Any) -> Axes:
import matplotlib.pyplot as plt
# can call gcf unconditionally: either it exists or would be created by plt.axes
f = plt.gcf()
# only call gca if an active axes exists
if f.axes:
# can not pass kwargs to active axes
return plt.gca()
return plt.axes(**subplot_kws)
def _get_units_from_attrs(da: DataArray) -> str:
"""Extracts and formats the unit/units from a attributes."""
pint_array_type = DuckArrayModule("pint").type
units = " [{}]"
if isinstance(da.data, pint_array_type):
return units.format(str(da.data.units))
if "units" in da.attrs:
return units.format(da.attrs["units"])
if "unit" in da.attrs:
return units.format(da.attrs["unit"])
return ""
def label_from_attrs(da: DataArray | None, extra: str = "") -> str:
"""Makes informative labels if variable metadata (attrs) follows
CF conventions."""
if da is None:
return ""
name: str = "{}"
if "long_name" in da.attrs:
name = name.format(da.attrs["long_name"])
elif "standard_name" in da.attrs:
name = name.format(da.attrs["standard_name"])
elif da.name is not None:
name = name.format(da.name)
else:
name = ""
units = _get_units_from_attrs(da)
# Treat `name` differently if it's a latex sequence
if name.startswith("$") and (name.count("$") % 2 == 0):
return "$\n$".join(
textwrap.wrap(name + extra + units, 60, break_long_words=False)
)
else:
return "\n".join(textwrap.wrap(name + extra + units, 30))
def _interval_to_mid_points(array: Iterable[pd.Interval]) -> np.ndarray:
"""
Helper function which returns an array
with the Intervals' mid points.
"""
return np.array([x.mid for x in array])
def _interval_to_bound_points(array: Sequence[pd.Interval]) -> np.ndarray:
"""
Helper function which returns an array
with the Intervals' boundaries.
"""
array_boundaries = np.array([x.left for x in array])
array_boundaries = np.concatenate((array_boundaries, np.array([array[-1].right])))
return array_boundaries
def _interval_to_double_bound_points(
xarray: Iterable[pd.Interval], yarray: Iterable
) -> tuple[np.ndarray, np.ndarray]:
"""
Helper function to deal with a xarray consisting of pd.Intervals. Each
interval is replaced with both boundaries. I.e. the length of xarray
doubles. yarray is modified so it matches the new shape of xarray.
"""
xarray1 = np.array([x.left for x in xarray])
xarray2 = np.array([x.right for x in xarray])
xarray_out = np.array(
list(itertools.chain.from_iterable(zip(xarray1, xarray2, strict=True)))
)
yarray_out = np.array(
list(itertools.chain.from_iterable(zip(yarray, yarray, strict=True)))
)
return xarray_out, yarray_out
def _resolve_intervals_1dplot(
xval: np.ndarray, yval: np.ndarray, kwargs: dict
) -> tuple[np.ndarray, np.ndarray, str, str, dict]:
"""
Helper function to replace the values of x and/or y coordinate arrays
containing pd.Interval with their mid-points or - for step plots - double
points which double the length.
"""
x_suffix = ""
y_suffix = ""
# Is it a step plot? (see matplotlib.Axes.step)
if kwargs.get("drawstyle", "").startswith("steps-"):
remove_drawstyle = False
# Convert intervals to double points
x_is_interval = _valid_other_type(xval, pd.Interval)
y_is_interval = _valid_other_type(yval, pd.Interval)
if x_is_interval and y_is_interval:
raise TypeError("Can't step plot intervals against intervals.")
elif x_is_interval:
xval, yval = _interval_to_double_bound_points(xval, yval)
remove_drawstyle = True
elif y_is_interval:
yval, xval = _interval_to_double_bound_points(yval, xval)
remove_drawstyle = True
# Remove steps-* to be sure that matplotlib is not confused
if remove_drawstyle:
del kwargs["drawstyle"]
# Is it another kind of plot?
else:
# Convert intervals to mid points and adjust labels
if _valid_other_type(xval, pd.Interval):
xval = _interval_to_mid_points(xval)
x_suffix = "_center"
if _valid_other_type(yval, pd.Interval):
yval = _interval_to_mid_points(yval)
y_suffix = "_center"
# return converted arguments
return xval, yval, x_suffix, y_suffix, kwargs
def _resolve_intervals_2dplot(val, func_name):
"""
Helper function to replace the values of a coordinate array containing
pd.Interval with their mid-points or - for pcolormesh - boundaries which
increases length by 1.
"""
label_extra = ""
if _valid_other_type(val, pd.Interval):
if func_name == "pcolormesh":
val = _interval_to_bound_points(val)
else:
val = _interval_to_mid_points(val)
label_extra = "_center"
return val, label_extra
def _valid_other_type(
x: ArrayLike, types: type[object] | tuple[type[object], ...]
) -> bool:
"""
Do all elements of x have a type from types?
"""
return all(isinstance(el, types) for el in np.ravel(x))
def _valid_numpy_subdtype(x, numpy_types):
"""
Is any dtype from numpy_types superior to the dtype of x?
"""
# If any of the types given in numpy_types is understood as numpy.generic,
# all possible x will be considered valid. This is probably unwanted.
for t in numpy_types:
assert not np.issubdtype(np.generic, t)
return any(np.issubdtype(x.dtype, t) for t in numpy_types)
def _ensure_plottable(*args) -> None:
"""
Raise exception if there is anything in args that can't be plotted on an
axis by matplotlib.
"""
numpy_types: tuple[type[object], ...] = (
np.floating,
np.integer,
np.timedelta64,
np.datetime64,
np.bool_,
np.str_,
)
other_types: tuple[type[object], ...] = (datetime, date)
cftime_datetime_types: tuple[type[object], ...] = (
() if cftime is None else (cftime.datetime,)
)
other_types += cftime_datetime_types
for x in args:
if not (
_valid_numpy_subdtype(np.asarray(x), numpy_types)
or _valid_other_type(np.asarray(x), other_types)
):
raise TypeError(
"Plotting requires coordinates to be numeric, boolean, "
"or dates of type numpy.datetime64, "
"datetime.datetime, cftime.datetime or "
f"pandas.Interval. Received data of type {np.asarray(x).dtype} instead."
)
if _valid_other_type(np.asarray(x), cftime_datetime_types):
if nc_time_axis_available:
# Register cftime datetypes to matplotlib.units.registry,
# otherwise matplotlib will raise an error:
import nc_time_axis # noqa: F401
else:
raise ImportError(
"Plotting of arrays of cftime.datetime "
"objects or arrays indexed by "
"cftime.datetime objects requires the "
"optional `nc-time-axis` (v1.2.0 or later) "
"package."
)
def _is_numeric(arr):
numpy_types = [np.floating, np.integer]
return _valid_numpy_subdtype(arr, numpy_types)
def _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params):
cbar_kwargs.setdefault("extend", cmap_params["extend"])
if cbar_ax is None:
cbar_kwargs.setdefault("ax", ax)
else:
cbar_kwargs.setdefault("cax", cbar_ax)
# dont pass extend as kwarg if it is in the mappable
if hasattr(primitive, "extend"):
cbar_kwargs.pop("extend")
fig = ax.get_figure()
cbar = fig.colorbar(primitive, **cbar_kwargs)
return cbar
def _rescale_imshow_rgb(darray, vmin, vmax, robust):
assert robust or vmin is not None or vmax is not None
# Calculate vmin and vmax automatically for `robust=True`
if robust:
if vmax is None:
vmax = np.nanpercentile(darray, 100 - ROBUST_PERCENTILE)
if vmin is None:
vmin = np.nanpercentile(darray, ROBUST_PERCENTILE)
# If not robust and one bound is None, calculate the default other bound
# and check that an interval between them exists.
elif vmax is None:
vmax = 255 if np.issubdtype(darray.dtype, np.integer) else 1
if vmax < vmin:
raise ValueError(
f"vmin={vmin!r} is less than the default vmax ({vmax!r}) - you must supply "
"a vmax > vmin in this case."
)
elif vmin is None:
vmin = 0
if vmin > vmax:
raise ValueError(
f"vmax={vmax!r} is less than the default vmin (0) - you must supply "
"a vmin < vmax in this case."
)
# Scale interval [vmin .. vmax] to [0 .. 1], with darray as 64-bit float
# to avoid precision loss, integer over/underflow, etc with extreme inputs.
# After scaling, downcast to 32-bit float. This substantially reduces
# memory usage after we hand `darray` off to matplotlib.
darray = ((darray.astype("f8") - vmin) / (vmax - vmin)).astype("f4")
return np.minimum(np.maximum(darray, 0), 1)
def _update_axes(
ax: Axes,
xincrease: bool | None,
yincrease: bool | None,
xscale: ScaleOptions = None,
yscale: ScaleOptions = None,
xticks: ArrayLike | None = None,
yticks: ArrayLike | None = None,
xlim: tuple[float, float] | None = None,
ylim: tuple[float, float] | None = None,
) -> None:
"""
Update axes with provided parameters
"""
if xincrease is None:
pass
elif xincrease and ax.xaxis_inverted():
ax.invert_xaxis()
elif not xincrease and not ax.xaxis_inverted():
ax.invert_xaxis()
if yincrease is None:
pass
elif yincrease and ax.yaxis_inverted():
ax.invert_yaxis()
elif not yincrease and not ax.yaxis_inverted():
ax.invert_yaxis()
# The default xscale, yscale needs to be None.
# If we set a scale it resets the axes formatters,
# This means that set_xscale('linear') on a datetime axis
# will remove the date labels. So only set the scale when explicitly
# asked to. https://github.com/matplotlib/matplotlib/issues/8740
if xscale is not None:
ax.set_xscale(xscale)
if yscale is not None:
ax.set_yscale(yscale)
if xticks is not None:
ax.set_xticks(xticks)
if yticks is not None:
ax.set_yticks(yticks)
if xlim is not None:
ax.set_xlim(xlim)
if ylim is not None:
ax.set_ylim(ylim)
def _is_monotonic(coord, axis=0):
"""
>>> _is_monotonic(np.array([0, 1, 2]))
np.True_
>>> _is_monotonic(np.array([2, 1, 0]))
np.True_
>>> _is_monotonic(np.array([0, 2, 1]))
np.False_
"""
if coord.shape[axis] < 3:
return True
else:
n = coord.shape[axis]
delta_pos = coord.take(np.arange(1, n), axis=axis) >= coord.take(
np.arange(0, n - 1), axis=axis
)
delta_neg = coord.take(np.arange(1, n), axis=axis) <= coord.take(
np.arange(0, n - 1), axis=axis
)
return np.all(delta_pos) or np.all(delta_neg)
def _infer_interval_breaks(coord, axis=0, scale=None, check_monotonic=False):
"""
>>> _infer_interval_breaks(np.arange(5))
array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5])
>>> _infer_interval_breaks([[0, 1], [3, 4]], axis=1)
array([[-0.5, 0.5, 1.5],
[ 2.5, 3.5, 4.5]])
>>> _infer_interval_breaks(np.logspace(-2, 2, 5), scale="log")
array([3.16227766e-03, 3.16227766e-02, 3.16227766e-01, 3.16227766e+00,
3.16227766e+01, 3.16227766e+02])
"""
coord = np.asarray(coord)
if check_monotonic and not _is_monotonic(coord, axis=axis):
raise ValueError(
"The input coordinate is not sorted in increasing "
f"order along axis {axis}. This can lead to unexpected "
"results. Consider calling the `sortby` method on "
"the input DataArray. To plot data with categorical "
"axes, consider using the `heatmap` function from "
"the `seaborn` statistical plotting library."
)
# If logscale, compute the intervals in the logarithmic space
if scale == "log":
if (coord <= 0).any():
raise ValueError(
"Found negative or zero value in coordinates. "
"Coordinates must be positive on logscale plots."
)
coord = np.log10(coord)
deltas = 0.5 * np.diff(coord, axis=axis)
if deltas.size == 0:
deltas = np.array(0.0)
first = np.take(coord, [0], axis=axis) - np.take(deltas, [0], axis=axis)
last = np.take(coord, [-1], axis=axis) + np.take(deltas, [-1], axis=axis)
trim_last = tuple(
slice(None, -1) if n == axis else slice(None) for n in range(coord.ndim)
)
interval_breaks = np.concatenate(
[first, coord[trim_last] + deltas, last], axis=axis
)
if scale == "log":
# Recovert the intervals into the linear space
return np.power(10, interval_breaks)
return interval_breaks
def _process_cmap_cbar_kwargs(
func,
data,
cmap=None,
colors=None,
cbar_kwargs: Iterable[tuple[str, Any]] | Mapping[str, Any] | None = None,
levels=None,
_is_facetgrid=False,
**kwargs,
) -> tuple[dict[str, Any], dict[str, Any]]:
"""
Parameters
----------
func : plotting function
data : ndarray,
Data values
Returns
-------
cmap_params : dict
cbar_kwargs : dict
"""
if func.__name__ == "surface":
# Leave user to specify cmap settings for surface plots
kwargs["cmap"] = cmap
return {
k: kwargs.get(k)
for k in ["vmin", "vmax", "cmap", "extend", "levels", "norm"]
}, {}
cbar_kwargs = {} if cbar_kwargs is None else dict(cbar_kwargs)
if "contour" in func.__name__ and levels is None:
levels = 7 # this is the matplotlib default
# colors is mutually exclusive with cmap
if cmap and colors:
raise ValueError("Can't specify both cmap and colors.")
# colors is only valid when levels is supplied or the plot is of type
# contour or contourf
if colors and (("contour" not in func.__name__) and (levels is None)):
raise ValueError("Can only specify colors with contour or levels")
# we should not be getting a list of colors in cmap anymore
# is there a better way to do this test?
if isinstance(cmap, list | tuple):
raise ValueError(
"Specifying a list of colors in cmap is deprecated. "
"Use colors keyword instead."
)
cmap_kwargs = {
"plot_data": data,
"levels": levels,
"cmap": colors if colors else cmap,
"filled": func.__name__ != "contour",
}
cmap_args = getfullargspec(_determine_cmap_params).args
cmap_kwargs.update((a, kwargs[a]) for a in cmap_args if a in kwargs)
if not _is_facetgrid:
cmap_params = _determine_cmap_params(**cmap_kwargs)
else:
cmap_params = {
k: cmap_kwargs[k]
for k in ["vmin", "vmax", "cmap", "extend", "levels", "norm"]
}
return cmap_params, cbar_kwargs
def _get_nice_quiver_magnitude(u, v):
import matplotlib as mpl
ticker = mpl.ticker.MaxNLocator(3)
mean = np.mean(np.hypot(u.to_numpy(), v.to_numpy()))
magnitude = ticker.tick_values(0, mean)[-2]
return magnitude
# Copied from matplotlib, tweaked so func can return strings.
# https://github.com/matplotlib/matplotlib/issues/19555
def legend_elements(
self, prop="colors", num="auto", fmt=None, func=lambda x: x, **kwargs
):
"""
Create legend handles and labels for a PathCollection.
Each legend handle is a `.Line2D` representing the Path that was drawn,
and each label is a string what each Path represents.
This is useful for obtaining a legend for a `~.Axes.scatter` plot;
e.g.::
scatter = plt.scatter([1, 2, 3], [4, 5, 6], c=[7, 2, 3])
plt.legend(*scatter.legend_elements())
creates three legend elements, one for each color with the numerical
values passed to *c* as the labels.
Also see the :ref:`automatedlegendcreation` example.
Parameters
----------
prop : {"colors", "sizes"}, default: "colors"
If "colors", the legend handles will show the different colors of
the collection. If "sizes", the legend will show the different
sizes. To set both, use *kwargs* to directly edit the `.Line2D`
properties.
num : int, None, "auto" (default), array-like, or `~.ticker.Locator`
Target number of elements to create.
If None, use all unique elements of the mappable array. If an
integer, target to use *num* elements in the normed range.
If *"auto"*, try to determine which option better suits the nature
of the data.
The number of created elements may slightly deviate from *num* due
to a `~.ticker.Locator` being used to find useful locations.
If a list or array, use exactly those elements for the legend.
Finally, a `~.ticker.Locator` can be provided.
fmt : str, `~matplotlib.ticker.Formatter`, or None (default)
The format or formatter to use for the labels. If a string must be
a valid input for a `~.StrMethodFormatter`. If None (the default),
use a `~.ScalarFormatter`.
func : function, default: ``lambda x: x``
Function to calculate the labels. Often the size (or color)
argument to `~.Axes.scatter` will have been pre-processed by the
user using a function ``s = f(x)`` to make the markers visible;
e.g. ``size = np.log10(x)``. Providing the inverse of this
function here allows that pre-processing to be inverted, so that
the legend labels have the correct values; e.g. ``func = lambda
x: 10**x``.
**kwargs
Allowed keyword arguments are *color* and *size*. E.g. it may be
useful to set the color of the markers if *prop="sizes"* is used;
similarly to set the size of the markers if *prop="colors"* is
used. Any further parameters are passed onto the `.Line2D`
instance. This may be useful to e.g. specify a different
*markeredgecolor* or *alpha* for the legend handles.
Returns
-------
handles : list of `.Line2D`
Visual representation of each element of the legend.
labels : list of str
The string labels for elements of the legend.
"""
import warnings
import matplotlib as mpl
mlines = mpl.lines
handles = []
labels = []
if prop == "colors":
arr = self.get_array()
if arr is None:
warnings.warn(
"Collection without array used. Make sure to "
"specify the values to be colormapped via the "
"`c` argument.",
stacklevel=2,
)
return handles, labels
_size = kwargs.pop("size", mpl.rcParams["lines.markersize"])
def _get_color_and_size(value):
return self.cmap(self.norm(value)), _size
elif prop == "sizes":
if isinstance(self, mpl.collections.LineCollection):
arr = self.get_linewidths()
else:
arr = self.get_sizes()
_color = kwargs.pop("color", "k")
def _get_color_and_size(value):
return _color, np.sqrt(value)
else:
raise ValueError(
"Valid values for `prop` are 'colors' or "
f"'sizes'. You supplied '{prop}' instead."
)
# Get the unique values and their labels:
values = np.unique(arr)
label_values = np.asarray(func(values))
label_values_are_numeric = np.issubdtype(label_values.dtype, np.number)
# Handle the label format:
if fmt is None and label_values_are_numeric:
fmt = mpl.ticker.ScalarFormatter(useOffset=False, useMathText=True)
elif fmt is None and not label_values_are_numeric:
fmt = mpl.ticker.StrMethodFormatter("{x}")
elif isinstance(fmt, str):
fmt = mpl.ticker.StrMethodFormatter(fmt)
fmt.create_dummy_axis()
if num == "auto":
num = 9
if len(values) <= num:
num = None
if label_values_are_numeric:
label_values_min = label_values.min()
label_values_max = label_values.max()
fmt.axis.set_view_interval(label_values_min, label_values_max)
fmt.axis.set_data_interval(label_values_min, label_values_max)
if num is not None:
# Labels are numerical but larger than the target
# number of elements, reduce to target using matplotlibs
# ticker classes:
if isinstance(num, mpl.ticker.Locator):
loc = num
elif np.iterable(num):
loc = mpl.ticker.FixedLocator(num)
else:
num = int(num)
loc = mpl.ticker.MaxNLocator(
nbins=num, min_n_ticks=num - 1, steps=[1, 2, 2.5, 3, 5, 6, 8, 10]
)
# Get nicely spaced label_values:
label_values = loc.tick_values(label_values_min, label_values_max)
# Remove extrapolated label_values:
cond = (label_values >= label_values_min) & (
label_values <= label_values_max
)
label_values = label_values[cond]
# Get the corresponding values by creating a linear interpolant
# with small step size:
values_interp = np.linspace(values.min(), values.max(), 256)
label_values_interp = func(values_interp)
ix = np.argsort(label_values_interp)
values = np.interp(label_values, label_values_interp[ix], values_interp[ix])
elif num is not None and not label_values_are_numeric:
# Labels are not numerical so modifying label_values is not
# possible, instead filter the array with nicely distributed
# indexes:
if type(num) == int: # noqa: E721
loc = mpl.ticker.LinearLocator(num)
else:
raise ValueError("`num` only supports integers for non-numeric labels.")
ind = loc.tick_values(0, len(label_values) - 1).astype(int)
label_values = label_values[ind]
values = values[ind]
# Some formatters requires set_locs:
if hasattr(fmt, "set_locs"):
fmt.set_locs(label_values)
# Default settings for handles, add or override with kwargs:
kw = dict(markeredgewidth=self.get_linewidths()[0], alpha=self.get_alpha())
kw.update(kwargs)
for val, lab in zip(values, label_values, strict=True):
color, size = _get_color_and_size(val)
if isinstance(self, mpl.collections.PathCollection):
kw.update(linestyle="", marker=self.get_paths()[0], markersize=size)
elif isinstance(self, mpl.collections.LineCollection):
kw.update(linestyle=self.get_linestyle()[0], linewidth=size)
h = mlines.Line2D([0], [0], color=color, **kw)
handles.append(h)
labels.append(fmt(lab))
return handles, labels
def _legend_add_subtitle(handles, labels, text):
"""Add a subtitle to legend handles."""
import matplotlib.pyplot as plt
if text and len(handles) > 1:
# Create a blank handle that's not visible, the
# invisibility will be used to discern which are subtitles
# or not:
blank_handle = plt.Line2D([], [], label=text)
blank_handle.set_visible(False)
# Subtitles are shown first:
handles = [blank_handle] + handles
labels = [text] + labels
return handles, labels
def _adjust_legend_subtitles(legend):
"""Make invisible-handle "subtitles" entries look more like titles."""
import matplotlib.pyplot as plt
# Legend title not in rcParams until 3.0
font_size = plt.rcParams.get("legend.title_fontsize", None)
hpackers = legend.findobj(plt.matplotlib.offsetbox.VPacker)[0].get_children()
hpackers = [v for v in hpackers if isinstance(v, plt.matplotlib.offsetbox.HPacker)]
for hpack in hpackers:
areas = hpack.get_children()
if len(areas) < 2:
continue
draw_area, text_area = areas
handles = draw_area.get_children()
# Assume that all artists that are not visible are
# subtitles:
if not all(artist.get_visible() for artist in handles):
# Remove the dummy marker which will bring the text
# more to the center:
draw_area.set_width(0)
for text in text_area.get_children():
if font_size is not None:
# The sutbtitles should have the same font size
# as normal legend titles:
text.set_size(font_size)
def _infer_meta_data(ds, x, y, hue, hue_style, add_guide, funcname):
dvars = set(ds.variables.keys())
error_msg = f" must be one of ({', '.join(sorted(str(v) for v in dvars))})"
if x not in dvars:
raise ValueError(f"Expected 'x' {error_msg}. Received {x} instead.")
if y not in dvars:
raise ValueError(f"Expected 'y' {error_msg}. Received {y} instead.")
if hue is not None and hue not in dvars:
raise ValueError(f"Expected 'hue' {error_msg}. Received {hue} instead.")
if hue:
hue_is_numeric = _is_numeric(ds[hue].values)
if hue_style is None:
hue_style = "continuous" if hue_is_numeric else "discrete"
if not hue_is_numeric and (hue_style == "continuous"):
raise ValueError(
f"Cannot create a colorbar for a non numeric coordinate: {hue}"
)
if add_guide is None or add_guide is True:
add_colorbar = True if hue_style == "continuous" else False
add_legend = True if hue_style == "discrete" else False
else:
add_colorbar = False
add_legend = False
else:
if add_guide is True and funcname not in ("quiver", "streamplot"):
raise ValueError("Cannot set add_guide when hue is None.")
add_legend = False
add_colorbar = False
if (add_guide or add_guide is None) and funcname == "quiver":
add_quiverkey = True
if hue:
add_colorbar = True
if not hue_style:
hue_style = "continuous"
elif hue_style != "continuous":
raise ValueError(
"hue_style must be 'continuous' or None for .plot.quiver or "
".plot.streamplot"
)
else:
add_quiverkey = False
if (add_guide or add_guide is None) and funcname == "streamplot":
if hue:
add_colorbar = True
if not hue_style:
hue_style = "continuous"
elif hue_style != "continuous":
raise ValueError(
"hue_style must be 'continuous' or None for .plot.quiver or "
".plot.streamplot"
)
if hue_style is not None and hue_style not in ["discrete", "continuous"]:
raise ValueError("hue_style must be either None, 'discrete' or 'continuous'.")
if hue:
hue_label = label_from_attrs(ds[hue])
hue = ds[hue]
else:
hue_label = None
hue = None
return {
"add_colorbar": add_colorbar,
"add_legend": add_legend,
"add_quiverkey": add_quiverkey,
"hue_label": hue_label,
"hue_style": hue_style,
"xlabel": label_from_attrs(ds[x]),
"ylabel": label_from_attrs(ds[y]),
"hue": hue,
}
@overload
def _parse_size(
data: None,
norm: tuple[float | None, float | None, bool] | Normalize | None,
) -> None: ...
@overload
def _parse_size(
data: DataArray,
norm: tuple[float | None, float | None, bool] | Normalize | None,
) -> pd.Series: ...
# copied from seaborn
def _parse_size(
data: DataArray | None,
norm: tuple[float | None, float | None, bool] | Normalize | None,
) -> None | pd.Series:
import matplotlib as mpl
if data is None:
return None
flatdata = data.values.flatten()
if not _is_numeric(flatdata):
levels = np.unique(flatdata)
numbers = np.arange(1, 1 + len(levels))[::-1]
else:
levels = numbers = np.sort(np.unique(flatdata))
min_width, default_width, max_width = _MARKERSIZE_RANGE
# width_range = min_width, max_width
if norm is None:
norm = mpl.colors.Normalize()
elif isinstance(norm, tuple):
norm = mpl.colors.Normalize(*norm)
elif not isinstance(norm, mpl.colors.Normalize):
err = "``size_norm`` must be None, tuple, or Normalize object."
raise ValueError(err)
assert isinstance(norm, mpl.colors.Normalize)
norm.clip = True
if not norm.scaled():
norm(np.asarray(numbers))
# limits = norm.vmin, norm.vmax
scl = norm(numbers)
widths = np.asarray(min_width + scl * (max_width - min_width))
if scl.mask.any():
widths[scl.mask] = 0
sizes = dict(zip(levels, widths, strict=True))
return pd.Series(sizes)
class _Normalize(Sequence):
"""
Normalize numerical or categorical values to numerical values.
The class includes helper methods that simplifies transforming to
and from normalized values.
Parameters
----------
data : DataArray
DataArray to normalize.
width : Sequence of three numbers, optional
Normalize the data to these (min, default, max) values.
The default is None.
"""
_data: DataArray | None
_data_unique: np.ndarray
_data_unique_index: np.ndarray
_data_unique_inverse: np.ndarray
_data_is_numeric: bool
_width: tuple[float, float, float] | None
__slots__ = (
"_data",
"_data_is_numeric",
"_data_unique",
"_data_unique_index",
"_data_unique_inverse",
"_width",
)
def __init__(
self,
data: DataArray | None,
width: tuple[float, float, float] | None = None,
_is_facetgrid: bool = False,
) -> None:
self._data = data
self._width = width if not _is_facetgrid else None
pint_array_type = DuckArrayModule("pint").type
to_unique = (
data.to_numpy() # type: ignore[union-attr]
if isinstance(data if data is None else data.data, pint_array_type)
else data
)
data_unique, data_unique_inverse = np.unique(to_unique, return_inverse=True) # type: ignore[call-overload]
self._data_unique = data_unique
self._data_unique_index = np.arange(0, data_unique.size)
self._data_unique_inverse = data_unique_inverse
self._data_is_numeric = False if data is None else _is_numeric(data)
def __repr__(self) -> str:
with np.printoptions(precision=4, suppress=True, threshold=5):
return (
f"<_Normalize(data, width={self._width})>\n"
f"{self._data_unique} -> {self._values_unique}"
)
def __len__(self) -> int:
return len(self._data_unique)
def __getitem__(self, key):
return self._data_unique[key]
@property
def data(self) -> DataArray | None:
return self._data
@property
def data_is_numeric(self) -> bool:
"""
Check if data is numeric.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).data_is_numeric
False
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> _Normalize(a).data_is_numeric
True
>>> # TODO: Datetime should be numeric right?
>>> a = xr.DataArray(pd.date_range("2000-1-1", periods=4))
>>> _Normalize(a).data_is_numeric
False
# TODO: Timedelta should be numeric right?
>>> a = xr.DataArray(pd.timedelta_range("-1D", periods=4, freq="D"))
>>> _Normalize(a).data_is_numeric
True
"""
return self._data_is_numeric
@overload
def _calc_widths(self, y: np.ndarray) -> np.ndarray: ...
@overload
def _calc_widths(self, y: DataArray) -> DataArray: ...
def _calc_widths(self, y: np.ndarray | DataArray) -> np.ndarray | DataArray:
"""
Normalize the values so they're in between self._width.
"""
if self._width is None:
return y
xmin, xdefault, xmax = self._width
diff_maxy_miny = np.max(y) - np.min(y)
if diff_maxy_miny == 0:
# Use default with if y is constant:
widths = xdefault + 0 * y
else:
# Normalize in between xmin and xmax:
k = (y - np.min(y)) / diff_maxy_miny
widths = xmin + k * (xmax - xmin)
return widths
@overload
def _indexes_centered(self, x: np.ndarray) -> np.ndarray: ...
@overload
def _indexes_centered(self, x: DataArray) -> DataArray: ...
def _indexes_centered(self, x: np.ndarray | DataArray) -> np.ndarray | DataArray:
"""
Offset indexes to make sure being in the center of self.levels.
["a", "b", "c"] -> [1, 3, 5]
"""
return x * 2 + 1
@property
def values(self) -> DataArray | None:
"""
Return a normalized number array for the unique levels.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).values
<xarray.DataArray (dim_0: 5)> Size: 40B
array([3, 1, 1, 3, 5])
Dimensions without coordinates: dim_0
>>> _Normalize(a, width=(18, 36, 72)).values
<xarray.DataArray (dim_0: 5)> Size: 40B
array([45., 18., 18., 45., 72.])
Dimensions without coordinates: dim_0
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> _Normalize(a).values
<xarray.DataArray (dim_0: 6)> Size: 48B
array([0.5, 0. , 0. , 0.5, 2. , 3. ])
Dimensions without coordinates: dim_0
>>> _Normalize(a, width=(18, 36, 72)).values
<xarray.DataArray (dim_0: 6)> Size: 48B
array([27., 18., 18., 27., 54., 72.])
Dimensions without coordinates: dim_0
>>> _Normalize(a * 0, width=(18, 36, 72)).values
<xarray.DataArray (dim_0: 6)> Size: 48B
array([36., 36., 36., 36., 36., 36.])
Dimensions without coordinates: dim_0
"""
if self.data is None:
return None
val: DataArray
if self.data_is_numeric:
val = self.data
else:
arr = self._indexes_centered(self._data_unique_inverse)
val = self.data.copy(data=arr.reshape(self.data.shape))
return self._calc_widths(val)
@property
def _values_unique(self) -> np.ndarray | None:
"""
Return unique values.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a)._values_unique
array([1, 3, 5])
>>> _Normalize(a, width=(18, 36, 72))._values_unique
array([18., 45., 72.])
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> _Normalize(a)._values_unique
array([0. , 0.5, 2. , 3. ])
>>> _Normalize(a, width=(18, 36, 72))._values_unique
array([18., 27., 54., 72.])
"""
if self.data is None:
return None
val: np.ndarray
if self.data_is_numeric:
val = self._data_unique
else:
val = self._indexes_centered(self._data_unique_index)
return self._calc_widths(val)
@property
def ticks(self) -> np.ndarray | None:
"""
Return ticks for plt.colorbar if the data is not numeric.
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).ticks
array([1, 3, 5])
"""
val: None | np.ndarray
if self.data_is_numeric:
val = None
else:
val = self._indexes_centered(self._data_unique_index)
return val
@property
def levels(self) -> np.ndarray:
"""
Return discrete levels that will evenly bound self.values.
["a", "b", "c"] -> [0, 2, 4, 6]
Examples
--------
>>> a = xr.DataArray(["b", "a", "a", "b", "c"])
>>> _Normalize(a).levels
array([0, 2, 4, 6])
"""
return (
np.append(self._data_unique_index, np.max(self._data_unique_index) + 1) * 2
)
@property
def _lookup(self) -> pd.Series:
if self._values_unique is None:
raise ValueError("self.data can't be None.")
return pd.Series(dict(zip(self._values_unique, self._data_unique, strict=True)))
def _lookup_arr(self, x) -> np.ndarray:
# Use reindex to be less sensitive to float errors. reindex only
# works with sorted index.
# Return as numpy array since legend_elements
# seems to require that:
return self._lookup.sort_index().reindex(x, method="nearest").to_numpy()
@property
def format(self) -> FuncFormatter:
"""
Return a FuncFormatter that maps self.values elements back to
the original value as a string. Useful with plt.colorbar.
Examples
--------
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> aa = _Normalize(a, width=(0, 0.5, 1))
>>> aa._lookup
0.000000 0.0
0.166667 0.5
0.666667 2.0
1.000000 3.0
dtype: float64
>>> aa.format(1)
'3.0'
"""
import matplotlib.pyplot as plt
def _func(x: Any, pos: None | Any = None):
return f"{self._lookup_arr([x])[0]}"
return plt.FuncFormatter(_func)
@property
def func(self) -> Callable[[Any, None | Any], Any]:
"""
Return a lambda function that maps self.values elements back to
the original value as a numpy array. Useful with ax.legend_elements.
Examples
--------
>>> a = xr.DataArray([0.5, 0, 0, 0.5, 2, 3])
>>> aa = _Normalize(a, width=(0, 0.5, 1))
>>> aa._lookup
0.000000 0.0
0.166667 0.5
0.666667 2.0
1.000000 3.0
dtype: float64
>>> aa.func([0.16, 1])
array([0.5, 3. ])
"""
def _func(x: Any, pos: None | Any = None):
return self._lookup_arr(x)
return _func
def _determine_guide(
hueplt_norm: _Normalize,
sizeplt_norm: _Normalize,
add_colorbar: None | bool = None,
add_legend: None | bool = None,
plotfunc_name: str | None = None,
) -> tuple[bool, bool]:
if plotfunc_name == "hist":
return False, False
if (add_colorbar) and hueplt_norm.data is None:
raise KeyError("Cannot create a colorbar when hue is None.")
if add_colorbar is None:
if hueplt_norm.data is not None:
add_colorbar = True
else:
add_colorbar = False
if add_legend and hueplt_norm.data is None and sizeplt_norm.data is None:
raise KeyError("Cannot create a legend when hue and markersize is None.")
if add_legend is None:
if (
not add_colorbar
and (hueplt_norm.data is not None and hueplt_norm.data_is_numeric is False)
) or sizeplt_norm.data is not None:
add_legend = True
else:
add_legend = False
return add_colorbar, add_legend
def _add_legend(
hueplt_norm: _Normalize,
sizeplt_norm: _Normalize,
primitive,
legend_ax,
plotfunc: str,
):
primitive = primitive if isinstance(primitive, list) else [primitive]
handles, labels = [], []
for huesizeplt, prop in [
(hueplt_norm, "colors"),
(sizeplt_norm, "sizes"),
]:
if huesizeplt.data is not None:
# Get legend handles and labels that displays the
# values correctly. Order might be different because
# legend_elements uses np.unique instead of pd.unique,
# FacetGrid.add_legend might have troubles with this:
hdl, lbl = [], []
for p in primitive:
hdl_, lbl_ = legend_elements(p, prop, num="auto", func=huesizeplt.func)
hdl += hdl_
lbl += lbl_
# Only save unique values:
u, ind = np.unique(lbl, return_index=True)
ind = np.argsort(ind)
lbl = u[ind].tolist()
hdl = np.array(hdl)[ind].tolist()
# Add a subtitle:
hdl, lbl = _legend_add_subtitle(hdl, lbl, label_from_attrs(huesizeplt.data))
handles += hdl
labels += lbl
legend = legend_ax.legend(handles, labels, framealpha=0.5)
_adjust_legend_subtitles(legend)
return legend
def _guess_coords_to_plot(
darray: DataArray,
coords_to_plot: MutableMapping[str, Hashable | None],
kwargs: dict,
default_guess: tuple[str, ...] = ("x",),
# TODO: Can this be normalized, plt.cbook.normalize_kwargs?
ignore_guess_kwargs: tuple[tuple[str, ...], ...] = ((),),
) -> MutableMapping[str, Hashable]:
"""
Guess what coords to plot if some of the values in coords_to_plot are None which
happens when the user has not defined all available ways of visualizing
the data.
Parameters
----------
darray : DataArray
The DataArray to check for available coords.
coords_to_plot : MutableMapping[str, Hashable]
Coords defined by the user to plot.
kwargs : dict
Extra kwargs that will be sent to matplotlib.
default_guess : Iterable[str], optional
Default values and order to retrieve dims if values in dims_plot is
missing, default: ("x", "hue", "size").
ignore_guess_kwargs : tuple[tuple[str, ...], ...]
Matplotlib arguments to ignore.
Examples
--------
>>> ds = xr.tutorial.scatter_example_dataset(seed=42)
>>> # Only guess x by default:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": None},
... kwargs={},
... )
{'x': 'x', 'z': None, 'hue': None, 'size': None}
>>> # Guess all plot dims with other default values:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": None},
... kwargs={},
... default_guess=("x", "hue", "size"),
... ignore_guess_kwargs=((), ("c", "color"), ("s",)),
... )
{'x': 'x', 'z': None, 'hue': 'y', 'size': 'z'}
>>> # Don't guess ´size´, since the matplotlib kwarg ´s´ has been defined:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": None},
... kwargs={"s": 5},
... default_guess=("x", "hue", "size"),
... ignore_guess_kwargs=((), ("c", "color"), ("s",)),
... )
{'x': 'x', 'z': None, 'hue': 'y', 'size': None}
>>> # Prioritize ´size´ over ´s´:
>>> xr.plot.utils._guess_coords_to_plot(
... ds.A,
... coords_to_plot={"x": None, "z": None, "hue": None, "size": "x"},
... kwargs={"s": 5},
... default_guess=("x", "hue", "size"),
... ignore_guess_kwargs=((), ("c", "color"), ("s",)),
... )
{'x': 'y', 'z': None, 'hue': 'z', 'size': 'x'}
"""
coords_to_plot_exist = {k: v for k, v in coords_to_plot.items() if v is not None}
available_coords = tuple(
k for k in darray.coords.keys() if k not in coords_to_plot_exist.values()
)
# If dims_plot[k] isn't defined then fill with one of the available dims, unless
# one of related mpl kwargs has been used. This should have similar behaviour as
# * plt.plot(x, y) -> Multiple lines with different colors if y is 2d.
# * plt.plot(x, y, color="red") -> Multiple red lines if y is 2d.
for k, dim, ign_kws in zip(
default_guess, available_coords, ignore_guess_kwargs, strict=False
):
if coords_to_plot.get(k, None) is None and all(
kwargs.get(ign_kw) is None for ign_kw in ign_kws
):
coords_to_plot[k] = dim
for k, dim in coords_to_plot.items():
_assert_valid_xy(darray, dim, k)
return coords_to_plot
def _set_concise_date(ax: Axes, axis: Literal["x", "y", "z"] = "x") -> None:
"""
Use ConciseDateFormatter which is meant to improve the
strings chosen for the ticklabels, and to minimize the
strings used in those tick labels as much as possible.
https://matplotlib.org/stable/gallery/ticks/date_concise_formatter.html
Parameters
----------
ax : Axes
Figure axes.
axis : Literal["x", "y", "z"], optional
Which axis to make concise. The default is "x".
"""
import matplotlib.dates as mdates
locator = mdates.AutoDateLocator()
formatter = mdates.ConciseDateFormatter(locator)
_axis = getattr(ax, f"{axis}axis")
_axis.set_major_locator(locator)
_axis.set_major_formatter(formatter)