CCR/.venv/lib/python3.12/site-packages/xarray/tests/test_formatting.py

1168 lines
38 KiB
Python

from __future__ import annotations
import sys
from textwrap import dedent
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray.core import formatting
from xarray.core.indexes import Index
from xarray.tests import requires_cftime, requires_dask, requires_netCDF4
class CustomIndex(Index):
names: tuple[str, ...]
def __init__(self, names: tuple[str, ...]):
self.names = names
def __repr__(self):
return f"CustomIndex(coords={self.names})"
class TestFormatting:
def test_get_indexer_at_least_n_items(self) -> None:
cases = [
((20,), (slice(10),), (slice(-10, None),)),
((3, 20), (0, slice(10)), (-1, slice(-10, None))),
((2, 10), (0, slice(10)), (-1, slice(-10, None))),
((2, 5), (slice(2), slice(None)), (slice(-2, None), slice(None))),
((1, 2, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
((2, 3, 5), (0, slice(2), slice(None)), (-1, slice(-2, None), slice(None))),
(
(1, 10, 1),
(0, slice(10), slice(None)),
(-1, slice(-10, None), slice(None)),
),
(
(2, 5, 1),
(slice(2), slice(None), slice(None)),
(slice(-2, None), slice(None), slice(None)),
),
((2, 5, 3), (0, slice(4), slice(None)), (-1, slice(-4, None), slice(None))),
(
(2, 3, 3),
(slice(2), slice(None), slice(None)),
(slice(-2, None), slice(None), slice(None)),
),
]
for shape, start_expected, end_expected in cases:
actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=False)
assert start_expected == actual
actual = formatting._get_indexer_at_least_n_items(shape, 10, from_end=True)
assert end_expected == actual
def test_first_n_items(self) -> None:
array = np.arange(100).reshape(10, 5, 2)
for n in [3, 10, 13, 100, 200]:
actual = formatting.first_n_items(array, n)
expected = array.flat[:n]
assert (expected == actual).all()
with pytest.raises(ValueError, match=r"at least one item"):
formatting.first_n_items(array, 0)
def test_last_n_items(self) -> None:
array = np.arange(100).reshape(10, 5, 2)
for n in [3, 10, 13, 100, 200]:
actual = formatting.last_n_items(array, n)
expected = array.flat[-n:]
assert (expected == actual).all()
with pytest.raises(ValueError, match=r"at least one item"):
formatting.first_n_items(array, 0)
def test_last_item(self) -> None:
array = np.arange(100)
reshape = ((10, 10), (1, 100), (2, 2, 5, 5))
expected = np.array([99])
for r in reshape:
result = formatting.last_item(array.reshape(r))
assert result == expected
def test_format_item(self) -> None:
cases = [
(pd.Timestamp("2000-01-01T12"), "2000-01-01T12:00:00"),
(pd.Timestamp("2000-01-01"), "2000-01-01"),
(pd.Timestamp("NaT"), "NaT"),
(pd.Timedelta("10 days 1 hour"), "10 days 01:00:00"),
(pd.Timedelta("-3 days"), "-3 days +00:00:00"),
(pd.Timedelta("3 hours"), "0 days 03:00:00"),
(pd.Timedelta("NaT"), "NaT"),
("foo", "'foo'"),
(b"foo", "b'foo'"),
(1, "1"),
(1.0, "1.0"),
(np.float16(1.1234), "1.123"),
(np.float32(1.0111111), "1.011"),
(np.float64(22.222222), "22.22"),
]
for item, expected in cases:
actual = formatting.format_item(item)
assert expected == actual
def test_format_items(self) -> None:
cases = [
(np.arange(4) * np.timedelta64(1, "D"), "0 days 1 days 2 days 3 days"),
(
np.arange(4) * np.timedelta64(3, "h"),
"00:00:00 03:00:00 06:00:00 09:00:00",
),
(
np.arange(4) * np.timedelta64(500, "ms"),
"00:00:00 00:00:00.500000 00:00:01 00:00:01.500000",
),
(pd.to_timedelta(["NaT", "0s", "1s", "NaT"]), "NaT 00:00:00 00:00:01 NaT"), # type: ignore[arg-type, unused-ignore]
(
pd.to_timedelta(["1 day 1 hour", "1 day", "0 hours"]), # type: ignore[arg-type, unused-ignore]
"1 days 01:00:00 1 days 00:00:00 0 days 00:00:00",
),
([1, 2, 3], "1 2 3"),
]
for item, expected in cases:
actual = " ".join(formatting.format_items(item))
assert expected == actual
def test_format_array_flat(self) -> None:
actual = formatting.format_array_flat(np.arange(100), 2)
expected = "..."
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 9)
expected = "0 ... 99"
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 10)
expected = "0 1 ... 99"
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 13)
expected = "0 1 ... 98 99"
assert expected == actual
actual = formatting.format_array_flat(np.arange(100), 15)
expected = "0 1 2 ... 98 99"
assert expected == actual
# NB: Probably not ideal; an alternative would be cutting after the
# first ellipsis
actual = formatting.format_array_flat(np.arange(100.0), 11)
expected = "0.0 ... ..."
assert expected == actual
actual = formatting.format_array_flat(np.arange(100.0), 12)
expected = "0.0 ... 99.0"
assert expected == actual
actual = formatting.format_array_flat(np.arange(3), 5)
expected = "0 1 2"
assert expected == actual
actual = formatting.format_array_flat(np.arange(4.0), 11)
expected = "0.0 ... 3.0"
assert expected == actual
actual = formatting.format_array_flat(np.arange(0), 0)
expected = ""
assert expected == actual
actual = formatting.format_array_flat(np.arange(1), 1)
expected = "0"
assert expected == actual
actual = formatting.format_array_flat(np.arange(2), 3)
expected = "0 1"
assert expected == actual
actual = formatting.format_array_flat(np.arange(4), 7)
expected = "0 1 2 3"
assert expected == actual
actual = formatting.format_array_flat(np.arange(5), 7)
expected = "0 ... 4"
assert expected == actual
long_str = [" ".join(["hello world" for _ in range(100)])]
actual = formatting.format_array_flat(np.asarray([long_str]), 21)
expected = "'hello world hello..."
assert expected == actual
def test_pretty_print(self) -> None:
assert formatting.pretty_print("abcdefghij", 8) == "abcde..."
assert formatting.pretty_print("ß", 1) == "ß"
def test_maybe_truncate(self) -> None:
assert formatting.maybe_truncate("ß", 10) == "ß"
def test_format_timestamp_invalid_pandas_format(self) -> None:
expected = "2021-12-06 17:00:00 00"
with pytest.raises(ValueError):
formatting.format_timestamp(expected)
def test_format_timestamp_out_of_bounds(self) -> None:
from datetime import datetime
date = datetime(1300, 12, 1)
expected = "1300-12-01"
result = formatting.format_timestamp(date)
assert result == expected
date = datetime(2300, 12, 1)
expected = "2300-12-01"
result = formatting.format_timestamp(date)
assert result == expected
def test_attribute_repr(self) -> None:
short = formatting.summarize_attr("key", "Short string")
long = formatting.summarize_attr("key", 100 * "Very long string ")
newlines = formatting.summarize_attr("key", "\n\n\n")
tabs = formatting.summarize_attr("key", "\t\t\t")
assert short == " key: Short string"
assert len(long) <= 80
assert long.endswith("...")
assert "\n" not in newlines
assert "\t" not in tabs
def test_index_repr(self) -> None:
coord_names = ("x", "y")
index = CustomIndex(coord_names)
names = ("x",)
normal = formatting.summarize_index(names, index, col_width=20)
assert names[0] in normal
assert len(normal.splitlines()) == len(names)
assert "CustomIndex" in normal
class IndexWithInlineRepr(CustomIndex):
def _repr_inline_(self, max_width: int):
return f"CustomIndex[{', '.join(self.names)}]"
index = IndexWithInlineRepr(coord_names)
inline = formatting.summarize_index(names, index, col_width=20)
assert names[0] in inline
assert index._repr_inline_(max_width=40) in inline
@pytest.mark.parametrize(
"names",
(
("x",),
("x", "y"),
("x", "y", "z"),
("x", "y", "z", "a"),
),
)
def test_index_repr_grouping(self, names) -> None:
index = CustomIndex(names)
normal = formatting.summarize_index(names, index, col_width=20)
assert all(name in normal for name in names)
assert len(normal.splitlines()) == len(names)
assert "CustomIndex" in normal
hint_chars = [line[2] for line in normal.splitlines()]
if len(names) <= 1:
assert hint_chars == [" "]
else:
assert hint_chars[0] == "" and hint_chars[-1] == ""
assert len(names) == 2 or hint_chars[1:-1] == [""] * (len(names) - 2)
def test_diff_array_repr(self) -> None:
da_a = xr.DataArray(
np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"),
dims=("x", "y"),
coords={
"x": np.array(["a", "b"], dtype="U1"),
"y": np.array([1, 2, 3], dtype="int64"),
},
attrs={"units": "m", "description": "desc"},
)
da_b = xr.DataArray(
np.array([1, 2], dtype="int64"),
dims="x",
coords={
"x": np.array(["a", "c"], dtype="U1"),
"label": ("x", np.array([1, 2], dtype="int64")),
},
attrs={"units": "kg"},
)
byteorder = "<" if sys.byteorder == "little" else ">"
expected = dedent(
f"""\
Left and right DataArray objects are not identical
Differing dimensions:
(x: 2, y: 3) != (x: 2)
Differing values:
L
array([[1, 2, 3],
[4, 5, 6]], dtype=int64)
R
array([1, 2], dtype=int64)
Differing coordinates:
L * x (x) {byteorder}U1 8B 'a' 'b'
R * x (x) {byteorder}U1 8B 'a' 'c'
Coordinates only on the left object:
* y (y) int64 24B 1 2 3
Coordinates only on the right object:
label (x) int64 16B 1 2
Differing attributes:
L units: m
R units: kg
Attributes only on the left object:
description: desc"""
)
actual = formatting.diff_array_repr(da_a, da_b, "identical")
try:
assert actual == expected
except AssertionError:
# depending on platform, dtype may not be shown in numpy array repr
assert actual == expected.replace(", dtype=int64", "")
da_a = xr.DataArray(
np.array([[1, 2, 3], [4, 5, 6]], dtype="int8"),
dims=("x", "y"),
coords=xr.Coordinates(
{
"x": np.array([True, False], dtype="bool"),
"y": np.array([1, 2, 3], dtype="int16"),
},
indexes={"y": CustomIndex(("y",))},
),
)
da_b = xr.DataArray(
np.array([1, 2], dtype="int8"),
dims="x",
coords=xr.Coordinates(
{
"x": np.array([True, False], dtype="bool"),
"label": ("x", np.array([1, 2], dtype="int16")),
},
indexes={"label": CustomIndex(("label",))},
),
)
expected = dedent(
"""\
Left and right DataArray objects are not equal
Differing dimensions:
(x: 2, y: 3) != (x: 2)
Differing values:
L
array([[1, 2, 3],
[4, 5, 6]], dtype=int8)
R
array([1, 2], dtype=int8)
Coordinates only on the left object:
* y (y) int16 6B 1 2 3
Coordinates only on the right object:
* label (x) int16 4B 1 2
""".rstrip()
)
actual = formatting.diff_array_repr(da_a, da_b, "equals")
assert actual == expected
va = xr.Variable(
"x", np.array([1, 2, 3], dtype="int64"), {"title": "test Variable"}
)
vb = xr.Variable(("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64"))
expected = dedent(
"""\
Left and right Variable objects are not equal
Differing dimensions:
(x: 3) != (x: 2, y: 3)
Differing values:
L
array([1, 2, 3], dtype=int64)
R
array([[1, 2, 3],
[4, 5, 6]], dtype=int64)"""
)
actual = formatting.diff_array_repr(va, vb, "equals")
try:
assert actual == expected
except AssertionError:
assert actual == expected.replace(", dtype=int64", "")
@pytest.mark.filterwarnings("error")
def test_diff_attrs_repr_with_array(self) -> None:
attrs_a = {"attr": np.array([0, 1])}
attrs_b = {"attr": 1}
expected = dedent(
"""\
Differing attributes:
L attr: [0 1]
R attr: 1
"""
).strip()
actual = formatting.diff_attrs_repr(attrs_a, attrs_b, "equals")
assert expected == actual
attrs_c = {"attr": np.array([-3, 5])}
expected = dedent(
"""\
Differing attributes:
L attr: [0 1]
R attr: [-3 5]
"""
).strip()
actual = formatting.diff_attrs_repr(attrs_a, attrs_c, "equals")
assert expected == actual
# should not raise a warning
attrs_c = {"attr": np.array([0, 1, 2])}
expected = dedent(
"""\
Differing attributes:
L attr: [0 1]
R attr: [0 1 2]
"""
).strip()
actual = formatting.diff_attrs_repr(attrs_a, attrs_c, "equals")
assert expected == actual
def test__diff_mapping_repr_array_attrs_on_variables(self) -> None:
a = {
"a": xr.DataArray(
dims="x",
data=np.array([1], dtype="int16"),
attrs={"b": np.array([1, 2], dtype="int8")},
)
}
b = {
"a": xr.DataArray(
dims="x",
data=np.array([1], dtype="int16"),
attrs={"b": np.array([2, 3], dtype="int8")},
)
}
actual = formatting.diff_data_vars_repr(a, b, compat="identical", col_width=8)
expected = dedent(
"""\
Differing data variables:
L a (x) int16 2B 1
Differing variable attributes:
b: [1 2]
R a (x) int16 2B 1
Differing variable attributes:
b: [2 3]
""".rstrip()
)
assert actual == expected
def test_diff_dataset_repr(self) -> None:
ds_a = xr.Dataset(
data_vars={
"var1": (("x", "y"), np.array([[1, 2, 3], [4, 5, 6]], dtype="int64")),
"var2": ("x", np.array([3, 4], dtype="int64")),
},
coords={
"x": (
"x",
np.array(["a", "b"], dtype="U1"),
{"foo": "bar", "same": "same"},
),
"y": np.array([1, 2, 3], dtype="int64"),
},
attrs={"title": "mytitle", "description": "desc"},
)
ds_b = xr.Dataset(
data_vars={"var1": ("x", np.array([1, 2], dtype="int64"))},
coords={
"x": (
"x",
np.array(["a", "c"], dtype="U1"),
{"source": 0, "foo": "baz", "same": "same"},
),
"label": ("x", np.array([1, 2], dtype="int64")),
},
attrs={"title": "newtitle"},
)
byteorder = "<" if sys.byteorder == "little" else ">"
expected = dedent(
f"""\
Left and right Dataset objects are not identical
Differing dimensions:
(x: 2, y: 3) != (x: 2)
Differing coordinates:
L * x (x) {byteorder}U1 8B 'a' 'b'
Differing variable attributes:
foo: bar
R * x (x) {byteorder}U1 8B 'a' 'c'
Differing variable attributes:
source: 0
foo: baz
Coordinates only on the left object:
* y (y) int64 24B 1 2 3
Coordinates only on the right object:
label (x) int64 16B 1 2
Differing data variables:
L var1 (x, y) int64 48B 1 2 3 4 5 6
R var1 (x) int64 16B 1 2
Data variables only on the left object:
var2 (x) int64 16B 3 4
Differing attributes:
L title: mytitle
R title: newtitle
Attributes only on the left object:
description: desc"""
)
actual = formatting.diff_dataset_repr(ds_a, ds_b, "identical")
assert actual == expected
def test_array_repr(self) -> None:
ds = xr.Dataset(
coords={
"foo": np.array([1, 2, 3], dtype=np.uint64),
"bar": np.array([1, 2, 3], dtype=np.uint64),
}
)
ds[(1, 2)] = xr.DataArray(np.array([0], dtype=np.uint64), dims="test")
ds_12 = ds[(1, 2)]
# Test repr function behaves correctly:
actual = formatting.array_repr(ds_12)
expected = dedent(
"""\
<xarray.DataArray (1, 2) (test: 1)> Size: 8B
array([0], dtype=uint64)
Dimensions without coordinates: test"""
)
assert actual == expected
# Test repr, str prints returns correctly as well:
assert repr(ds_12) == expected
assert str(ds_12) == expected
# f-strings (aka format(...)) by default should use the repr:
actual = f"{ds_12}"
assert actual == expected
with xr.set_options(display_expand_data=False):
actual = formatting.array_repr(ds[(1, 2)])
expected = dedent(
"""\
<xarray.DataArray (1, 2) (test: 1)> Size: 8B
0
Dimensions without coordinates: test"""
)
assert actual == expected
def test_array_repr_variable(self) -> None:
var = xr.Variable("x", [0, 1])
formatting.array_repr(var)
with xr.set_options(display_expand_data=False):
formatting.array_repr(var)
def test_array_repr_recursive(self) -> None:
# GH:issue:7111
# direct recursion
var = xr.Variable("x", [0, 1])
var.attrs["x"] = var
formatting.array_repr(var)
da = xr.DataArray([0, 1], dims=["x"])
da.attrs["x"] = da
formatting.array_repr(da)
# indirect recursion
var.attrs["x"] = da
da.attrs["x"] = var
formatting.array_repr(var)
formatting.array_repr(da)
@requires_dask
def test_array_scalar_format(self) -> None:
# Test numpy scalars:
var = xr.DataArray(np.array(0))
assert format(var, "") == repr(var)
assert format(var, "d") == "0"
assert format(var, ".2f") == "0.00"
# Test dask scalars, not supported however:
import dask.array as da
var = xr.DataArray(da.array(0))
assert format(var, "") == repr(var)
with pytest.raises(TypeError) as excinfo:
format(var, ".2f")
assert "unsupported format string passed to" in str(excinfo.value)
# Test numpy arrays raises:
var = xr.DataArray([0.1, 0.2])
with pytest.raises(NotImplementedError) as excinfo: # type: ignore[assignment]
format(var, ".2f")
assert "Using format_spec is only supported" in str(excinfo.value)
def test_datatree_print_empty_node(self):
dt: xr.DataTree = xr.DataTree(name="root")
printout = str(dt)
assert printout == "<xarray.DataTree 'root'>\nGroup: /"
def test_datatree_print_empty_node_with_attrs(self):
dat = xr.Dataset(attrs={"note": "has attrs"})
dt: xr.DataTree = xr.DataTree(name="root", dataset=dat)
printout = str(dt)
assert printout == dedent(
"""\
<xarray.DataTree 'root'>
Group: /
Attributes:
note: has attrs"""
)
def test_datatree_print_node_with_data(self):
dat = xr.Dataset({"a": [0, 2]})
dt: xr.DataTree = xr.DataTree(name="root", dataset=dat)
printout = str(dt)
expected = [
"<xarray.DataTree 'root'>",
"Group: /",
"Dimensions",
"Coordinates",
"a",
]
for expected_line, printed_line in zip(
expected, printout.splitlines(), strict=True
):
assert expected_line in printed_line
def test_datatree_printout_nested_node(self):
dat = xr.Dataset({"a": [0, 2]})
root = xr.DataTree.from_dict(
{
"/results": dat,
}
)
printout = str(root)
assert printout.splitlines()[3].startswith(" ")
def test_datatree_repr_of_node_with_data(self):
dat = xr.Dataset({"a": [0, 2]})
dt: xr.DataTree = xr.DataTree(name="root", dataset=dat)
assert "Coordinates" in repr(dt)
def test_diff_datatree_repr_different_groups(self):
dt_1: xr.DataTree = xr.DataTree.from_dict({"a": None})
dt_2: xr.DataTree = xr.DataTree.from_dict({"b": None})
expected = dedent(
"""\
Left and right DataTree objects are not identical
Children at root node do not match: ['a'] vs ['b']"""
)
actual = formatting.diff_datatree_repr(dt_1, dt_2, "identical")
assert actual == expected
def test_diff_datatree_repr_different_subgroups(self):
dt_1: xr.DataTree = xr.DataTree.from_dict({"a": None, "a/b": None, "a/c": None})
dt_2: xr.DataTree = xr.DataTree.from_dict({"a": None, "a/b": None})
expected = dedent(
"""\
Left and right DataTree objects are not isomorphic
Children at node 'a' do not match: ['b', 'c'] vs ['b']"""
)
actual = formatting.diff_datatree_repr(dt_1, dt_2, "isomorphic")
assert actual == expected
def test_diff_datatree_repr_node_data(self):
# casting to int64 explicitly ensures that int64s are created on all architectures
ds1 = xr.Dataset({"u": np.int64(0), "v": np.int64(1)})
ds3 = xr.Dataset({"w": np.int64(5)})
dt_1: xr.DataTree = xr.DataTree.from_dict({"a": ds1, "a/b": ds3})
ds2 = xr.Dataset({"u": np.int64(0)})
ds4 = xr.Dataset({"w": np.int64(6)})
dt_2: xr.DataTree = xr.DataTree.from_dict({"a": ds2, "a/b": ds4}, name="foo")
expected = dedent(
"""\
Left and right DataTree objects are not identical
Differing names:
None != 'foo'
Data at node 'a' does not match:
Data variables only on the left object:
v int64 8B 1
Data at node 'a/b' does not match:
Differing data variables:
L w int64 8B 5
R w int64 8B 6"""
)
actual = formatting.diff_datatree_repr(dt_1, dt_2, "identical")
assert actual == expected
def test_inline_variable_array_repr_custom_repr() -> None:
class CustomArray:
def __init__(self, value, attr):
self.value = value
self.attr = attr
def _repr_inline_(self, width):
formatted = f"({self.attr}) {self.value}"
if len(formatted) > width:
formatted = f"({self.attr}) ..."
return formatted
def __array_namespace__(self, *args, **kwargs):
return NotImplemented
@property
def shape(self) -> tuple[int, ...]:
return self.value.shape
@property
def dtype(self):
return self.value.dtype
@property
def ndim(self):
return self.value.ndim
value = CustomArray(np.array([20, 40]), "m")
variable = xr.Variable("x", value)
max_width = 10
actual = formatting.inline_variable_array_repr(variable, max_width=10)
assert actual == value._repr_inline_(max_width)
def test_set_numpy_options() -> None:
original_options = np.get_printoptions()
with formatting.set_numpy_options(threshold=10):
assert len(repr(np.arange(500))) < 200
# original options are restored
assert np.get_printoptions() == original_options
def test_short_array_repr() -> None:
cases = [
np.random.randn(500),
np.random.randn(20, 20),
np.random.randn(5, 10, 15),
np.random.randn(5, 10, 15, 3),
np.random.randn(100, 5, 1),
]
# number of lines:
# for default numpy repr: 167, 140, 254, 248, 599
# for short_array_repr: 1, 7, 24, 19, 25
for array in cases:
num_lines = formatting.short_array_repr(array).count("\n") + 1
assert num_lines < 30
# threshold option (default: 200)
array2 = np.arange(100)
assert "..." not in formatting.short_array_repr(array2)
with xr.set_options(display_values_threshold=10):
assert "..." in formatting.short_array_repr(array2)
def test_large_array_repr_length() -> None:
da = xr.DataArray(np.random.randn(100, 5, 1))
result = repr(da).splitlines()
assert len(result) < 50
@requires_netCDF4
def test_repr_file_collapsed(tmp_path) -> None:
arr_to_store = xr.DataArray(np.arange(300, dtype=np.int64), dims="test")
arr_to_store.to_netcdf(tmp_path / "test.nc", engine="netcdf4")
with (
xr.open_dataarray(tmp_path / "test.nc") as arr,
xr.set_options(display_expand_data=False),
):
actual = repr(arr)
expected = dedent(
"""\
<xarray.DataArray (test: 300)> Size: 2kB
[300 values with dtype=int64]
Dimensions without coordinates: test"""
)
assert actual == expected
arr_loaded = arr.compute()
actual = arr_loaded.__repr__()
expected = dedent(
"""\
<xarray.DataArray (test: 300)> Size: 2kB
0 1 2 3 4 5 6 7 8 9 10 11 12 ... 288 289 290 291 292 293 294 295 296 297 298 299
Dimensions without coordinates: test"""
)
assert actual == expected
@pytest.mark.parametrize(
"display_max_rows, n_vars, n_attr",
[(50, 40, 30), (35, 40, 30), (11, 40, 30), (1, 40, 30)],
)
def test__mapping_repr(display_max_rows, n_vars, n_attr) -> None:
long_name = "long_name"
a = np.char.add(long_name, np.arange(0, n_vars).astype(str))
b = np.char.add("attr_", np.arange(0, n_attr).astype(str))
c = np.char.add("coord", np.arange(0, n_vars).astype(str))
attrs = {k: 2 for k in b}
coords = {_c: np.array([0, 1], dtype=np.uint64) for _c in c}
data_vars = dict()
for v, _c in zip(a, coords.items(), strict=True):
data_vars[v] = xr.DataArray(
name=v,
data=np.array([3, 4], dtype=np.uint64),
dims=[_c[0]],
coords=dict([_c]),
)
ds = xr.Dataset(data_vars)
ds.attrs = attrs
with xr.set_options(display_max_rows=display_max_rows):
# Parse the data_vars print and show only data_vars rows:
summary = formatting.dataset_repr(ds).split("\n")
summary = [v for v in summary if long_name in v]
# The length should be less than or equal to display_max_rows:
len_summary = len(summary)
data_vars_print_size = min(display_max_rows, len_summary)
assert len_summary == data_vars_print_size
summary = formatting.data_vars_repr(ds.data_vars).split("\n")
summary = [v for v in summary if long_name in v]
# The length should be equal to the number of data variables
len_summary = len(summary)
assert len_summary == n_vars
summary = formatting.coords_repr(ds.coords).split("\n")
summary = [v for v in summary if "coord" in v]
# The length should be equal to the number of data variables
len_summary = len(summary)
assert len_summary == n_vars
with xr.set_options(
display_max_rows=display_max_rows,
display_expand_coords=False,
display_expand_data_vars=False,
display_expand_attrs=False,
):
actual = formatting.dataset_repr(ds)
col_width = formatting._calculate_col_width(ds.variables)
dims_start = formatting.pretty_print("Dimensions:", col_width)
dims_values = formatting.dim_summary_limited(
ds.sizes, col_width=col_width + 1, max_rows=display_max_rows
)
expected_size = "1kB"
expected = f"""\
<xarray.Dataset> Size: {expected_size}
{dims_start}({dims_values})
Coordinates: ({n_vars})
Data variables: ({n_vars})
Attributes: ({n_attr})"""
expected = dedent(expected)
assert actual == expected
def test__mapping_repr_recursive() -> None:
# GH:issue:7111
# direct recursion
ds = xr.Dataset({"a": ("x", [1, 2, 3])})
ds.attrs["ds"] = ds
formatting.dataset_repr(ds)
# indirect recursion
ds2 = xr.Dataset({"b": ("y", [1, 2, 3])})
ds.attrs["ds"] = ds2
ds2.attrs["ds"] = ds
formatting.dataset_repr(ds2)
def test__element_formatter(n_elements: int = 100) -> None:
expected = """\
Dimensions without coordinates: dim_0: 3, dim_1: 3, dim_2: 3, dim_3: 3,
dim_4: 3, dim_5: 3, dim_6: 3, dim_7: 3,
dim_8: 3, dim_9: 3, dim_10: 3, dim_11: 3,
dim_12: 3, dim_13: 3, dim_14: 3, dim_15: 3,
dim_16: 3, dim_17: 3, dim_18: 3, dim_19: 3,
dim_20: 3, dim_21: 3, dim_22: 3, dim_23: 3,
...
dim_76: 3, dim_77: 3, dim_78: 3, dim_79: 3,
dim_80: 3, dim_81: 3, dim_82: 3, dim_83: 3,
dim_84: 3, dim_85: 3, dim_86: 3, dim_87: 3,
dim_88: 3, dim_89: 3, dim_90: 3, dim_91: 3,
dim_92: 3, dim_93: 3, dim_94: 3, dim_95: 3,
dim_96: 3, dim_97: 3, dim_98: 3, dim_99: 3"""
expected = dedent(expected)
intro = "Dimensions without coordinates: "
elements = [
f"{k}: {v}" for k, v in {f"dim_{k}": 3 for k in np.arange(n_elements)}.items()
]
values = xr.core.formatting._element_formatter(
elements, col_width=len(intro), max_rows=12
)
actual = intro + values
assert expected == actual
def test_lazy_array_wont_compute() -> None:
from xarray.core.indexing import LazilyIndexedArray
class LazilyIndexedArrayNotComputable(LazilyIndexedArray):
def __array__(
self, dtype: np.typing.DTypeLike = None, /, *, copy: bool | None = None
) -> np.ndarray:
raise NotImplementedError("Computing this array is not possible.")
arr = LazilyIndexedArrayNotComputable(np.array([1, 2]))
var = xr.DataArray(arr)
# These will crash if var.data are converted to numpy arrays:
var.__repr__()
var._repr_html_()
@pytest.mark.parametrize("as_dataset", (False, True))
def test_format_xindexes_none(as_dataset: bool) -> None:
# ensure repr for empty xindexes can be displayed #8367
expected = """\
Indexes:
*empty*"""
expected = dedent(expected)
obj: xr.DataArray | xr.Dataset = xr.DataArray()
obj = obj._to_temp_dataset() if as_dataset else obj
actual = repr(obj.xindexes)
assert actual == expected
@pytest.mark.parametrize("as_dataset", (False, True))
def test_format_xindexes(as_dataset: bool) -> None:
expected = """\
Indexes:
x PandasIndex"""
expected = dedent(expected)
obj: xr.DataArray | xr.Dataset = xr.DataArray([1], coords={"x": [1]})
obj = obj._to_temp_dataset() if as_dataset else obj
actual = repr(obj.xindexes)
assert actual == expected
@requires_cftime
def test_empty_cftimeindex_repr() -> None:
index = xr.coding.cftimeindex.CFTimeIndex([])
expected = """\
Indexes:
time CFTimeIndex([], dtype='object', length=0, calendar=None, freq=None)"""
expected = dedent(expected)
da = xr.DataArray([], coords={"time": index})
actual = repr(da.indexes)
assert actual == expected
def test_display_nbytes() -> None:
xds = xr.Dataset(
{
"foo": np.arange(1200, dtype=np.int16),
"bar": np.arange(111, dtype=np.int16),
}
)
# Note: int16 is used to ensure that dtype is shown in the
# numpy array representation for all OSes included Windows
actual = repr(xds)
expected = """
<xarray.Dataset> Size: 3kB
Dimensions: (foo: 1200, bar: 111)
Coordinates:
* foo (foo) int16 2kB 0 1 2 3 4 5 6 ... 1194 1195 1196 1197 1198 1199
* bar (bar) int16 222B 0 1 2 3 4 5 6 7 ... 104 105 106 107 108 109 110
Data variables:
*empty*
""".strip()
assert actual == expected
actual = repr(xds["foo"])
array_repr = repr(xds.foo.data).replace("\n ", "")
expected = f"""
<xarray.DataArray 'foo' (foo: 1200)> Size: 2kB
{array_repr}
Coordinates:
* foo (foo) int16 2kB 0 1 2 3 4 5 6 ... 1194 1195 1196 1197 1198 1199
""".strip()
assert actual == expected
def test_array_repr_dtypes():
# These dtypes are expected to be represented similarly
# on Ubuntu, macOS and Windows environments of the CI.
# Unsigned integer could be used as easy replacements
# for tests where the data-type does not matter,
# but the repr does, including the size
# (size of a int == size of an uint)
# Signed integer dtypes
ds = xr.DataArray(np.array([0], dtype="int8"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 1B
array([0], dtype=int8)
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="int16"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 2B
array([0], dtype=int16)
Dimensions without coordinates: x
""".strip()
assert actual == expected
# Unsigned integer dtypes
ds = xr.DataArray(np.array([0], dtype="uint8"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 1B
array([0], dtype=uint8)
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="uint16"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 2B
array([0], dtype=uint16)
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="uint32"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 4B
array([0], dtype=uint32)
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="uint64"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 8B
array([0], dtype=uint64)
Dimensions without coordinates: x
""".strip()
assert actual == expected
# Float dtypes
ds = xr.DataArray(np.array([0.0]), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 8B
array([0.])
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="float16"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 2B
array([0.], dtype=float16)
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="float32"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 4B
array([0.], dtype=float32)
Dimensions without coordinates: x
""".strip()
assert actual == expected
ds = xr.DataArray(np.array([0], dtype="float64"), dims="x")
actual = repr(ds)
expected = """
<xarray.DataArray (x: 1)> Size: 8B
array([0.])
Dimensions without coordinates: x
""".strip()
assert actual == expected
# Signed integer dtypes
array = np.array([0])
ds = xr.DataArray(array, dims="x")
actual = repr(ds)
expected = f"""
<xarray.DataArray (x: 1)> Size: {array.dtype.itemsize}B
{array!r}
Dimensions without coordinates: x
""".strip()
assert actual == expected
array = np.array([0], dtype="int32")
ds = xr.DataArray(array, dims="x")
actual = repr(ds)
expected = f"""
<xarray.DataArray (x: 1)> Size: 4B
{array!r}
Dimensions without coordinates: x
""".strip()
assert actual == expected
array = np.array([0], dtype="int64")
ds = xr.DataArray(array, dims="x")
actual = repr(ds)
expected = f"""
<xarray.DataArray (x: 1)> Size: 8B
{array!r}
Dimensions without coordinates: x
""".strip()
assert actual == expected