CCR/.venv/lib/python3.12/site-packages/xarray/tests/test_indexes.py

732 lines
26 KiB
Python

from __future__ import annotations
import copy
from datetime import datetime
from typing import Any
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray.coding.cftimeindex import CFTimeIndex
from xarray.core.indexes import (
Hashable,
Index,
Indexes,
PandasIndex,
PandasMultiIndex,
_asarray_tuplesafe,
safe_cast_to_index,
)
from xarray.core.variable import IndexVariable, Variable
from xarray.tests import assert_array_equal, assert_identical, requires_cftime
from xarray.tests.test_coding_times import _all_cftime_date_types
def test_asarray_tuplesafe() -> None:
res = _asarray_tuplesafe(("a", 1))
assert isinstance(res, np.ndarray)
assert res.ndim == 0
assert res.item() == ("a", 1)
res = _asarray_tuplesafe([(0,), (1,)])
assert res.shape == (2,)
assert res[0] == (0,)
assert res[1] == (1,)
class CustomIndex(Index):
def __init__(self, dims) -> None:
self.dims = dims
class TestIndex:
@pytest.fixture
def index(self) -> CustomIndex:
return CustomIndex({"x": 2})
def test_from_variables(self) -> None:
with pytest.raises(NotImplementedError):
Index.from_variables({}, options={})
def test_concat(self) -> None:
with pytest.raises(NotImplementedError):
Index.concat([], "x")
def test_stack(self) -> None:
with pytest.raises(NotImplementedError):
Index.stack({}, "x")
def test_unstack(self, index) -> None:
with pytest.raises(NotImplementedError):
index.unstack()
def test_create_variables(self, index) -> None:
assert index.create_variables() == {}
assert index.create_variables({"x": "var"}) == {"x": "var"}
def test_to_pandas_index(self, index) -> None:
with pytest.raises(TypeError):
index.to_pandas_index()
def test_isel(self, index) -> None:
assert index.isel({}) is None
def test_sel(self, index) -> None:
with pytest.raises(NotImplementedError):
index.sel({})
def test_join(self, index) -> None:
with pytest.raises(NotImplementedError):
index.join(CustomIndex({"y": 2}))
def test_reindex_like(self, index) -> None:
with pytest.raises(NotImplementedError):
index.reindex_like(CustomIndex({"y": 2}))
def test_equals(self, index) -> None:
with pytest.raises(NotImplementedError):
index.equals(CustomIndex({"y": 2}))
def test_roll(self, index) -> None:
assert index.roll({}) is None
def test_rename(self, index) -> None:
assert index.rename({}, {}) is index
@pytest.mark.parametrize("deep", [True, False])
def test_copy(self, index, deep) -> None:
copied = index.copy(deep=deep)
assert isinstance(copied, CustomIndex)
assert copied is not index
copied.dims["x"] = 3
if deep:
assert copied.dims != index.dims
assert copied.dims != copy.deepcopy(index).dims
else:
assert copied.dims is index.dims
assert copied.dims is copy.copy(index).dims
def test_getitem(self, index) -> None:
with pytest.raises(NotImplementedError):
index[:]
class TestPandasIndex:
def test_constructor(self) -> None:
pd_idx = pd.Index([1, 2, 3])
index = PandasIndex(pd_idx, "x")
assert index.index.equals(pd_idx)
# makes a shallow copy
assert index.index is not pd_idx
assert index.dim == "x"
# test no name set for pd.Index
pd_idx.name = None
index = PandasIndex(pd_idx, "x")
assert index.index.name == "x"
def test_from_variables(self) -> None:
# pandas has only Float64Index but variable dtype should be preserved
data = np.array([1.1, 2.2, 3.3], dtype=np.float32)
var = xr.Variable(
"x", data, attrs={"unit": "m"}, encoding={"dtype": np.float64}
)
index = PandasIndex.from_variables({"x": var}, options={})
assert index.dim == "x"
assert index.index.equals(pd.Index(data))
assert index.coord_dtype == data.dtype
var2 = xr.Variable(("x", "y"), [[1, 2, 3], [4, 5, 6]])
with pytest.raises(ValueError, match=r".*only accepts one variable.*"):
PandasIndex.from_variables({"x": var, "foo": var2}, options={})
with pytest.raises(
ValueError, match=r".*cannot set a PandasIndex.*scalar variable.*"
):
PandasIndex.from_variables({"foo": xr.Variable((), 1)}, options={})
with pytest.raises(
ValueError, match=r".*only accepts a 1-dimensional variable.*"
):
PandasIndex.from_variables({"foo": var2}, options={})
def test_from_variables_index_adapter(self) -> None:
# test index type is preserved when variable wraps a pd.Index
data = pd.Series(["foo", "bar"], dtype="category")
pd_idx = pd.Index(data)
var = xr.Variable("x", pd_idx)
index = PandasIndex.from_variables({"x": var}, options={})
assert isinstance(index.index, pd.CategoricalIndex)
def test_concat_periods(self):
periods = pd.period_range("2000-01-01", periods=10)
indexes = [PandasIndex(periods[:5], "t"), PandasIndex(periods[5:], "t")]
expected = PandasIndex(periods, "t")
actual = PandasIndex.concat(indexes, dim="t")
assert actual.equals(expected)
assert isinstance(actual.index, pd.PeriodIndex)
positions = [list(range(5)), list(range(5, 10))]
actual = PandasIndex.concat(indexes, dim="t", positions=positions)
assert actual.equals(expected)
assert isinstance(actual.index, pd.PeriodIndex)
@pytest.mark.parametrize("dtype", [str, bytes])
def test_concat_str_dtype(self, dtype) -> None:
a = PandasIndex(np.array(["a"], dtype=dtype), "x", coord_dtype=dtype)
b = PandasIndex(np.array(["b"], dtype=dtype), "x", coord_dtype=dtype)
expected = PandasIndex(
np.array(["a", "b"], dtype=dtype), "x", coord_dtype=dtype
)
actual = PandasIndex.concat([a, b], "x")
assert actual.equals(expected)
assert np.issubdtype(actual.coord_dtype, dtype)
def test_concat_empty(self) -> None:
idx = PandasIndex.concat([], "x")
assert idx.coord_dtype is np.dtype("O")
def test_concat_dim_error(self) -> None:
indexes = [PandasIndex([0, 1], "x"), PandasIndex([2, 3], "y")]
with pytest.raises(ValueError, match=r"Cannot concatenate.*dimensions.*"):
PandasIndex.concat(indexes, "x")
def test_create_variables(self) -> None:
# pandas has only Float64Index but variable dtype should be preserved
data = np.array([1.1, 2.2, 3.3], dtype=np.float32)
pd_idx = pd.Index(data, name="foo")
index = PandasIndex(pd_idx, "x", coord_dtype=data.dtype)
index_vars = {
"foo": IndexVariable(
"x", data, attrs={"unit": "m"}, encoding={"fill_value": 0.0}
)
}
actual = index.create_variables(index_vars)
assert_identical(actual["foo"], index_vars["foo"])
assert actual["foo"].dtype == index_vars["foo"].dtype
assert actual["foo"].dtype == index.coord_dtype
def test_to_pandas_index(self) -> None:
pd_idx = pd.Index([1, 2, 3], name="foo")
index = PandasIndex(pd_idx, "x")
assert index.to_pandas_index() is index.index
def test_sel(self) -> None:
# TODO: add tests that aren't just for edge cases
index = PandasIndex(pd.Index([1, 2, 3]), "x")
with pytest.raises(KeyError, match=r"not all values found"):
index.sel({"x": [0]})
with pytest.raises(KeyError):
index.sel({"x": 0})
with pytest.raises(ValueError, match=r"does not have a MultiIndex"):
index.sel({"x": {"one": 0}})
def test_sel_boolean(self) -> None:
# index should be ignored and indexer dtype should not be coerced
# see https://github.com/pydata/xarray/issues/5727
index = PandasIndex(pd.Index([0.0, 2.0, 1.0, 3.0]), "x")
actual = index.sel({"x": [False, True, False, True]})
expected_dim_indexers = {"x": [False, True, False, True]}
np.testing.assert_array_equal(
actual.dim_indexers["x"], expected_dim_indexers["x"]
)
def test_sel_datetime(self) -> None:
index = PandasIndex(
pd.to_datetime(["2000-01-01", "2001-01-01", "2002-01-01"]), "x"
)
actual = index.sel({"x": "2001-01-01"})
expected_dim_indexers = {"x": 1}
assert actual.dim_indexers == expected_dim_indexers
actual = index.sel({"x": index.to_pandas_index().to_numpy()[1]})
assert actual.dim_indexers == expected_dim_indexers
def test_sel_unsorted_datetime_index_raises(self) -> None:
index = PandasIndex(pd.to_datetime(["2001", "2000", "2002"]), "x")
with pytest.raises(KeyError):
# pandas will try to convert this into an array indexer. We should
# raise instead, so we can be sure the result of indexing with a
# slice is always a view.
index.sel({"x": slice("2001", "2002")})
def test_equals(self) -> None:
index1 = PandasIndex([1, 2, 3], "x")
index2 = PandasIndex([1, 2, 3], "x")
assert index1.equals(index2) is True
def test_join(self) -> None:
index1 = PandasIndex(["a", "aa", "aaa"], "x", coord_dtype="<U3")
index2 = PandasIndex(["aa", "aaa", "aaaa"], "x", coord_dtype="<U4")
expected = PandasIndex(["aa", "aaa"], "x")
actual = index1.join(index2)
print(actual.index)
assert actual.equals(expected)
assert actual.coord_dtype == "=U4"
expected = PandasIndex(["a", "aa", "aaa", "aaaa"], "x")
actual = index1.join(index2, how="outer")
print(actual.index)
assert actual.equals(expected)
assert actual.coord_dtype == "=U4"
def test_reindex_like(self) -> None:
index1 = PandasIndex([0, 1, 2], "x")
index2 = PandasIndex([1, 2, 3, 4], "x")
expected = {"x": [1, 2, -1, -1]}
actual = index1.reindex_like(index2)
assert actual.keys() == expected.keys()
np.testing.assert_array_equal(actual["x"], expected["x"])
index3 = PandasIndex([1, 1, 2], "x")
with pytest.raises(ValueError, match=r".*index has duplicate values"):
index3.reindex_like(index2)
def test_rename(self) -> None:
index = PandasIndex(pd.Index([1, 2, 3], name="a"), "x", coord_dtype=np.int32)
# shortcut
new_index = index.rename({}, {})
assert new_index is index
new_index = index.rename({"a": "b"}, {})
assert new_index.index.name == "b"
assert new_index.dim == "x"
assert new_index.coord_dtype == np.int32
new_index = index.rename({}, {"x": "y"})
assert new_index.index.name == "a"
assert new_index.dim == "y"
assert new_index.coord_dtype == np.int32
def test_copy(self) -> None:
expected = PandasIndex([1, 2, 3], "x", coord_dtype=np.int32)
actual = expected.copy()
assert actual.index.equals(expected.index)
assert actual.index is not expected.index
assert actual.dim == expected.dim
assert actual.coord_dtype == expected.coord_dtype
def test_getitem(self) -> None:
pd_idx = pd.Index([1, 2, 3])
expected = PandasIndex(pd_idx, "x", coord_dtype=np.int32)
actual = expected[1:]
assert actual.index.equals(pd_idx[1:])
assert actual.dim == expected.dim
assert actual.coord_dtype == expected.coord_dtype
class TestPandasMultiIndex:
def test_constructor(self) -> None:
foo_data = np.array([0, 0, 1], dtype="int64")
bar_data = np.array([1.1, 1.2, 1.3], dtype="float64")
pd_idx = pd.MultiIndex.from_arrays([foo_data, bar_data], names=("foo", "bar"))
index = PandasMultiIndex(pd_idx, "x")
assert index.dim == "x"
assert index.index.equals(pd_idx)
assert index.index.names == ("foo", "bar")
assert index.index.name == "x"
assert index.level_coords_dtype == {
"foo": foo_data.dtype,
"bar": bar_data.dtype,
}
with pytest.raises(ValueError, match=".*conflicting multi-index level name.*"):
PandasMultiIndex(pd_idx, "foo")
# default level names
pd_idx = pd.MultiIndex.from_arrays([foo_data, bar_data])
index = PandasMultiIndex(pd_idx, "x")
assert list(index.index.names) == ["x_level_0", "x_level_1"]
def test_from_variables(self) -> None:
v_level1 = xr.Variable(
"x", [1, 2, 3], attrs={"unit": "m"}, encoding={"dtype": np.int32}
)
v_level2 = xr.Variable(
"x", ["a", "b", "c"], attrs={"unit": "m"}, encoding={"dtype": "U"}
)
index = PandasMultiIndex.from_variables(
{"level1": v_level1, "level2": v_level2}, options={}
)
expected_idx = pd.MultiIndex.from_arrays([v_level1.data, v_level2.data])
assert index.dim == "x"
assert index.index.equals(expected_idx)
assert index.index.name == "x"
assert list(index.index.names) == ["level1", "level2"]
var = xr.Variable(("x", "y"), [[1, 2, 3], [4, 5, 6]])
with pytest.raises(
ValueError, match=r".*only accepts 1-dimensional variables.*"
):
PandasMultiIndex.from_variables({"var": var}, options={})
v_level3 = xr.Variable("y", [4, 5, 6])
with pytest.raises(
ValueError, match=r"unmatched dimensions for multi-index variables.*"
):
PandasMultiIndex.from_variables(
{"level1": v_level1, "level3": v_level3}, options={}
)
def test_concat(self) -> None:
pd_midx = pd.MultiIndex.from_product(
[[0, 1, 2], ["a", "b"]], names=("foo", "bar")
)
level_coords_dtype = {"foo": np.int32, "bar": "=U1"}
midx1 = PandasMultiIndex(
pd_midx[:2], "x", level_coords_dtype=level_coords_dtype
)
midx2 = PandasMultiIndex(
pd_midx[2:], "x", level_coords_dtype=level_coords_dtype
)
expected = PandasMultiIndex(pd_midx, "x", level_coords_dtype=level_coords_dtype)
actual = PandasMultiIndex.concat([midx1, midx2], "x")
assert actual.equals(expected)
assert actual.level_coords_dtype == expected.level_coords_dtype
def test_stack(self) -> None:
prod_vars = {
"x": xr.Variable("x", pd.Index(["b", "a"]), attrs={"foo": "bar"}),
"y": xr.Variable("y", pd.Index([1, 3, 2])),
}
index_xr = PandasMultiIndex.stack(prod_vars, "z")
assert index_xr.dim == "z"
index_pd = index_xr.index
assert isinstance(index_pd, pd.MultiIndex)
# TODO: change to tuple when pandas 3 is minimum
assert list(index_pd.names) == ["x", "y"]
np.testing.assert_array_equal(
index_pd.codes, [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
)
with pytest.raises(
ValueError, match=r"conflicting dimensions for multi-index product.*"
):
PandasMultiIndex.stack(
{"x": xr.Variable("x", ["a", "b"]), "x2": xr.Variable("x", [1, 2])},
"z",
)
def test_stack_non_unique(self) -> None:
prod_vars = {
"x": xr.Variable("x", pd.Index(["b", "a"]), attrs={"foo": "bar"}),
"y": xr.Variable("y", pd.Index([1, 1, 2])),
}
index_xr = PandasMultiIndex.stack(prod_vars, "z")
index_pd = index_xr.index
assert isinstance(index_pd, pd.MultiIndex)
np.testing.assert_array_equal(
index_pd.codes, [[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1]]
)
np.testing.assert_array_equal(index_pd.levels[0], ["b", "a"])
np.testing.assert_array_equal(index_pd.levels[1], [1, 2])
def test_unstack(self) -> None:
pd_midx = pd.MultiIndex.from_product(
[["a", "b"], [1, 2, 3]], names=["one", "two"]
)
index = PandasMultiIndex(pd_midx, "x")
new_indexes, new_pd_idx = index.unstack()
assert list(new_indexes) == ["one", "two"]
assert new_indexes["one"].equals(PandasIndex(["a", "b"], "one"))
assert new_indexes["two"].equals(PandasIndex([1, 2, 3], "two"))
assert new_pd_idx.equals(pd_midx)
def test_unstack_requires_unique(self) -> None:
pd_midx = pd.MultiIndex.from_product([["a", "a"], [1, 2]], names=["one", "two"])
index = PandasMultiIndex(pd_midx, "x")
with pytest.raises(
ValueError, match="Cannot unstack MultiIndex containing duplicates"
):
index.unstack()
def test_create_variables(self) -> None:
foo_data = np.array([0, 0, 1], dtype="int64")
bar_data = np.array([1.1, 1.2, 1.3], dtype="float64")
pd_idx = pd.MultiIndex.from_arrays([foo_data, bar_data], names=("foo", "bar"))
index_vars = {
"x": IndexVariable("x", pd_idx),
"foo": IndexVariable("x", foo_data, attrs={"unit": "m"}),
"bar": IndexVariable("x", bar_data, encoding={"fill_value": 0}),
}
index = PandasMultiIndex(pd_idx, "x")
actual = index.create_variables(index_vars)
for k, expected in index_vars.items():
assert_identical(actual[k], expected)
assert actual[k].dtype == expected.dtype
if k != "x":
assert actual[k].dtype == index.level_coords_dtype[k]
def test_sel(self) -> None:
index = PandasMultiIndex(
pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two")), "x"
)
# test tuples inside slice are considered as scalar indexer values
actual = index.sel({"x": slice(("a", 1), ("b", 2))})
expected_dim_indexers = {"x": slice(0, 4)}
assert actual.dim_indexers == expected_dim_indexers
with pytest.raises(KeyError, match=r"not all values found"):
index.sel({"x": [0]})
with pytest.raises(KeyError):
index.sel({"x": 0})
with pytest.raises(ValueError, match=r"cannot provide labels for both.*"):
index.sel({"one": 0, "x": "a"})
with pytest.raises(
ValueError,
match=r"multi-index level names \('three',\) not found in indexes",
):
index.sel({"x": {"three": 0}})
with pytest.raises(IndexError):
index.sel({"x": (slice(None), 1, "no_level")})
def test_join(self):
midx = pd.MultiIndex.from_product([["a", "aa"], [1, 2]], names=("one", "two"))
level_coords_dtype = {"one": "=U2", "two": "i"}
index1 = PandasMultiIndex(midx, "x", level_coords_dtype=level_coords_dtype)
index2 = PandasMultiIndex(midx[0:2], "x", level_coords_dtype=level_coords_dtype)
actual = index1.join(index2)
assert actual.equals(index2)
assert actual.level_coords_dtype == level_coords_dtype
actual = index1.join(index2, how="outer")
assert actual.equals(index1)
assert actual.level_coords_dtype == level_coords_dtype
def test_rename(self) -> None:
level_coords_dtype = {"one": "<U1", "two": np.int32}
index = PandasMultiIndex(
pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two")),
"x",
level_coords_dtype=level_coords_dtype,
)
# shortcut
new_index = index.rename({}, {})
assert new_index is index
new_index = index.rename({"two": "three"}, {})
assert list(new_index.index.names) == ["one", "three"]
assert new_index.dim == "x"
assert new_index.level_coords_dtype == {"one": "<U1", "three": np.int32}
new_index = index.rename({}, {"x": "y"})
assert list(new_index.index.names) == ["one", "two"]
assert new_index.dim == "y"
assert new_index.level_coords_dtype == level_coords_dtype
def test_copy(self) -> None:
level_coords_dtype = {"one": "U<1", "two": np.int32}
expected = PandasMultiIndex(
pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two")),
"x",
level_coords_dtype=level_coords_dtype,
)
actual = expected.copy()
assert actual.index.equals(expected.index)
assert actual.index is not expected.index
assert actual.dim == expected.dim
assert actual.level_coords_dtype == expected.level_coords_dtype
class TestIndexes:
@pytest.fixture
def indexes_and_vars(self) -> tuple[list[PandasIndex], dict[Hashable, Variable]]:
x_idx = PandasIndex(pd.Index([1, 2, 3], name="x"), "x")
y_idx = PandasIndex(pd.Index([4, 5, 6], name="y"), "y")
z_pd_midx = pd.MultiIndex.from_product(
[["a", "b"], [1, 2]], names=["one", "two"]
)
z_midx = PandasMultiIndex(z_pd_midx, "z")
indexes = [x_idx, y_idx, z_midx]
variables = {}
for idx in indexes:
variables.update(idx.create_variables())
return indexes, variables
@pytest.fixture(params=["pd_index", "xr_index"])
def unique_indexes(
self, request, indexes_and_vars
) -> list[PandasIndex] | list[pd.Index]:
xr_indexes, _ = indexes_and_vars
if request.param == "pd_index":
return [idx.index for idx in xr_indexes]
else:
return xr_indexes
@pytest.fixture
def indexes(
self, unique_indexes, indexes_and_vars
) -> Indexes[Index] | Indexes[pd.Index]:
x_idx, y_idx, z_midx = unique_indexes
indexes: dict[Any, Index] = {
"x": x_idx,
"y": y_idx,
"z": z_midx,
"one": z_midx,
"two": z_midx,
}
_, variables = indexes_and_vars
index_type = Index if isinstance(x_idx, Index) else pd.Index
return Indexes(indexes, variables, index_type=index_type)
def test_interface(self, unique_indexes, indexes) -> None:
x_idx = unique_indexes[0]
assert list(indexes) == ["x", "y", "z", "one", "two"]
assert len(indexes) == 5
assert "x" in indexes
assert indexes["x"] is x_idx
def test_variables(self, indexes) -> None:
assert tuple(indexes.variables) == ("x", "y", "z", "one", "two")
def test_dims(self, indexes) -> None:
assert indexes.dims == {"x": 3, "y": 3, "z": 4}
def test_get_unique(self, unique_indexes, indexes) -> None:
assert indexes.get_unique() == unique_indexes
def test_is_multi(self, indexes) -> None:
assert indexes.is_multi("one") is True
assert indexes.is_multi("x") is False
def test_get_all_coords(self, indexes) -> None:
expected = {
"z": indexes.variables["z"],
"one": indexes.variables["one"],
"two": indexes.variables["two"],
}
assert indexes.get_all_coords("one") == expected
with pytest.raises(ValueError, match="errors must be.*"):
indexes.get_all_coords("x", errors="invalid")
with pytest.raises(ValueError, match="no index found.*"):
indexes.get_all_coords("no_coord")
assert indexes.get_all_coords("no_coord", errors="ignore") == {}
def test_get_all_dims(self, indexes) -> None:
expected = {"z": 4}
assert indexes.get_all_dims("one") == expected
def test_group_by_index(self, unique_indexes, indexes):
expected = [
(unique_indexes[0], {"x": indexes.variables["x"]}),
(unique_indexes[1], {"y": indexes.variables["y"]}),
(
unique_indexes[2],
{
"z": indexes.variables["z"],
"one": indexes.variables["one"],
"two": indexes.variables["two"],
},
),
]
assert indexes.group_by_index() == expected
def test_to_pandas_indexes(self, indexes) -> None:
pd_indexes = indexes.to_pandas_indexes()
assert isinstance(pd_indexes, Indexes)
assert all(isinstance(idx, pd.Index) for idx in pd_indexes.values())
assert indexes.variables == pd_indexes.variables
def test_copy_indexes(self, indexes) -> None:
copied, index_vars = indexes.copy_indexes()
assert copied.keys() == indexes.keys()
for new, original in zip(copied.values(), indexes.values(), strict=True):
assert new.equals(original)
# check unique index objects preserved
assert copied["z"] is copied["one"] is copied["two"]
assert index_vars.keys() == indexes.variables.keys()
for new, original in zip(
index_vars.values(), indexes.variables.values(), strict=True
):
assert_identical(new, original)
def test_safe_cast_to_index():
dates = pd.date_range("2000-01-01", periods=10)
x = np.arange(5)
td = x * np.timedelta64(1, "D")
for expected, array in [
(dates, dates.values),
(pd.Index(x, dtype=object), x.astype(object)),
(pd.Index(td), td),
(pd.Index(td, dtype=object), td.astype(object)),
]:
actual = safe_cast_to_index(array)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
@requires_cftime
def test_safe_cast_to_index_cftimeindex():
date_types = _all_cftime_date_types()
for date_type in date_types.values():
dates = [date_type(1, 1, day) for day in range(1, 20)]
expected = CFTimeIndex(dates)
actual = safe_cast_to_index(np.array(dates))
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
assert isinstance(actual, type(expected))
# Test that datetime.datetime objects are never used in a CFTimeIndex
@requires_cftime
def test_safe_cast_to_index_datetime_datetime():
dates = [datetime(1, 1, day) for day in range(1, 20)]
expected = pd.Index(dates)
actual = safe_cast_to_index(np.array(dates))
assert_array_equal(expected, actual)
assert isinstance(actual, pd.Index)
@pytest.mark.parametrize("dtype", ["int32", "float32"])
def test_restore_dtype_on_multiindexes(dtype: str) -> None:
foo = xr.Dataset(coords={"bar": ("bar", np.array([0, 1], dtype=dtype))})
foo = foo.stack(baz=("bar",))
assert str(foo["bar"].values.dtype) == dtype