CCR/.venv/lib/python3.12/site-packages/xarray/tests/test_ufuncs.py

267 lines
8.0 KiB
Python

from __future__ import annotations
import pickle
from unittest.mock import patch
import numpy as np
import pytest
import xarray as xr
import xarray.ufuncs as xu
from xarray.tests import assert_allclose, assert_array_equal, mock, requires_dask
from xarray.tests import assert_identical as assert_identical_
def assert_identical(a, b):
assert type(a) is type(b) or float(a) == float(b)
if isinstance(a, xr.DataArray | xr.Dataset | xr.Variable):
assert_identical_(a, b)
else:
assert_array_equal(a, b)
@pytest.mark.parametrize(
"a",
[
xr.Variable(["x"], [0, 0]),
xr.DataArray([0, 0], dims="x"),
xr.Dataset({"y": ("x", [0, 0])}),
],
)
def test_unary(a):
assert_allclose(a + 1, np.cos(a))
def test_binary():
args = [
0,
np.zeros(2),
xr.Variable(["x"], [0, 0]),
xr.DataArray([0, 0], dims="x"),
xr.Dataset({"y": ("x", [0, 0])}),
]
for n, t1 in enumerate(args):
for t2 in args[n:]:
assert_identical(t2 + 1, np.maximum(t1, t2 + 1))
assert_identical(t2 + 1, np.maximum(t2, t1 + 1))
assert_identical(t2 + 1, np.maximum(t1 + 1, t2))
assert_identical(t2 + 1, np.maximum(t2 + 1, t1))
def test_binary_out():
args = [
1,
np.ones(2),
xr.Variable(["x"], [1, 1]),
xr.DataArray([1, 1], dims="x"),
xr.Dataset({"y": ("x", [1, 1])}),
]
for arg in args:
actual_mantissa, actual_exponent = np.frexp(arg)
assert_identical(actual_mantissa, 0.5 * arg)
assert_identical(actual_exponent, arg)
def test_groupby():
ds = xr.Dataset({"a": ("x", [0, 0, 0])}, {"c": ("x", [0, 0, 1])})
ds_grouped = ds.groupby("c")
group_mean = ds_grouped.mean("x")
arr_grouped = ds["a"].groupby("c")
assert_identical(ds, np.maximum(ds_grouped, group_mean))
assert_identical(ds, np.maximum(group_mean, ds_grouped))
assert_identical(ds, np.maximum(arr_grouped, group_mean))
assert_identical(ds, np.maximum(group_mean, arr_grouped))
assert_identical(ds, np.maximum(ds_grouped, group_mean["a"]))
assert_identical(ds, np.maximum(group_mean["a"], ds_grouped))
assert_identical(ds.a, np.maximum(arr_grouped, group_mean.a))
assert_identical(ds.a, np.maximum(group_mean.a, arr_grouped))
with pytest.raises(ValueError, match=r"mismatched lengths for dimension"):
np.maximum(ds.a.variable, ds_grouped)
def test_alignment():
ds1 = xr.Dataset({"a": ("x", [1, 2])}, {"x": [0, 1]})
ds2 = xr.Dataset({"a": ("x", [2, 3]), "b": 4}, {"x": [1, 2]})
actual = np.add(ds1, ds2)
expected = xr.Dataset({"a": ("x", [4])}, {"x": [1]})
assert_identical_(actual, expected)
with xr.set_options(arithmetic_join="outer"):
actual = np.add(ds1, ds2)
expected = xr.Dataset(
{"a": ("x", [np.nan, 4, np.nan]), "b": np.nan}, coords={"x": [0, 1, 2]}
)
assert_identical_(actual, expected)
def test_kwargs():
x = xr.DataArray(0)
result = np.add(x, 1, dtype=np.float64)
assert result.dtype == np.float64
def test_xarray_defers_to_unrecognized_type():
class Other:
def __array_ufunc__(self, *args, **kwargs):
return "other"
xarray_obj = xr.DataArray([1, 2, 3])
other = Other()
assert np.maximum(xarray_obj, other) == "other"
assert np.sin(xarray_obj, out=other) == "other"
def test_xarray_handles_dask():
da = pytest.importorskip("dask.array")
x = xr.DataArray(np.ones((2, 2)), dims=["x", "y"])
y = da.ones((2, 2), chunks=(2, 2))
result = np.add(x, y)
assert result.chunks == ((2,), (2,))
assert isinstance(result, xr.DataArray)
def test_dask_defers_to_xarray():
da = pytest.importorskip("dask.array")
x = xr.DataArray(np.ones((2, 2)), dims=["x", "y"])
y = da.ones((2, 2), chunks=(2, 2))
result = np.add(y, x)
assert result.chunks == ((2,), (2,))
assert isinstance(result, xr.DataArray)
def test_gufunc_methods():
xarray_obj = xr.DataArray([1, 2, 3])
with pytest.raises(NotImplementedError, match=r"reduce method"):
np.add.reduce(xarray_obj, 1)
def test_out():
xarray_obj = xr.DataArray([1, 2, 3])
# xarray out arguments should raise
with pytest.raises(NotImplementedError, match=r"`out` argument"):
np.add(xarray_obj, 1, out=xarray_obj)
# but non-xarray should be OK
other = np.zeros((3,))
np.add(other, xarray_obj, out=other)
assert_identical(other, np.array([1, 2, 3]))
def test_gufuncs():
xarray_obj = xr.DataArray([1, 2, 3])
fake_gufunc = mock.Mock(signature="(n)->()", autospec=np.sin)
with pytest.raises(NotImplementedError, match=r"generalized ufuncs"):
xarray_obj.__array_ufunc__(fake_gufunc, "__call__", xarray_obj)
class DuckArray(np.ndarray):
# Minimal subclassed duck array with its own self-contained namespace,
# which implements a few ufuncs
def __new__(cls, array):
obj = np.asarray(array).view(cls)
return obj
def __array_namespace__(self):
return DuckArray
@staticmethod
def sin(x):
return np.sin(x)
@staticmethod
def add(x, y):
return x + y
class DuckArray2(DuckArray):
def __array_namespace__(self):
return DuckArray2
class TestXarrayUfuncs:
@pytest.fixture(autouse=True)
def setUp(self):
self.x = xr.DataArray([1, 2, 3])
self.xd = xr.DataArray(DuckArray([1, 2, 3]))
self.xd2 = xr.DataArray(DuckArray2([1, 2, 3]))
self.xt = xr.DataArray(np.datetime64("2021-01-01", "ns"))
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("name", xu.__all__)
def test_ufuncs(self, name, request):
xu_func = getattr(xu, name)
np_func = getattr(np, name, None)
if np_func is None and np.lib.NumpyVersion(np.__version__) < "2.0.0":
pytest.skip(f"Ufunc {name} is not available in numpy {np.__version__}.")
if name == "isnat":
args = (self.xt,)
elif hasattr(np_func, "nin") and np_func.nin == 2:
args = (self.x, self.x)
else:
args = (self.x,)
expected = np_func(*args)
actual = xu_func(*args)
if name in ["angle", "iscomplex"]:
np.testing.assert_equal(expected, actual.values)
else:
assert_identical(actual, expected)
def test_ufunc_pickle(self):
a = 1.0
cos_pickled = pickle.loads(pickle.dumps(xu.cos))
assert_identical(cos_pickled(a), xu.cos(a))
def test_ufunc_scalar(self):
actual = xu.sin(1)
assert isinstance(actual, float)
def test_ufunc_duck_array_dataarray(self):
actual = xu.sin(self.xd)
assert isinstance(actual.data, DuckArray)
def test_ufunc_duck_array_variable(self):
actual = xu.sin(self.xd.variable)
assert isinstance(actual.data, DuckArray)
def test_ufunc_duck_array_dataset(self):
ds = xr.Dataset({"a": self.xd})
actual = xu.sin(ds)
assert isinstance(actual.a.data, DuckArray)
@requires_dask
def test_ufunc_duck_dask(self):
import dask.array as da
x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3]))))
actual = xu.sin(x)
assert isinstance(actual.data._meta, DuckArray)
@requires_dask
@pytest.mark.xfail(reason="dask ufuncs currently dispatch to numpy")
def test_ufunc_duck_dask_no_array_ufunc(self):
import dask.array as da
# dask ufuncs currently only preserve duck arrays that implement __array_ufunc__
with patch.object(DuckArray, "__array_ufunc__", new=None, create=True):
x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3]))))
actual = xu.sin(x)
assert isinstance(actual.data._meta, DuckArray)
def test_ufunc_mixed_arrays_compatible(self):
actual = xu.add(self.xd, self.x)
assert isinstance(actual.data, DuckArray)
def test_ufunc_mixed_arrays_incompatible(self):
with pytest.raises(ValueError, match=r"Mixed array types"):
xu.add(self.xd, self.xd2)