CCR/.venv/lib/python3.12/site-packages/xarray/backends/h5netcdf_.py

579 lines
18 KiB
Python

from __future__ import annotations
import functools
import io
import os
from collections.abc import Iterable
from typing import TYPE_CHECKING, Any
import numpy as np
from xarray.backends.common import (
BACKEND_ENTRYPOINTS,
BackendEntrypoint,
WritableCFDataStore,
_normalize_path,
_open_remote_file,
datatree_from_dict_with_io_cleanup,
find_root_and_group,
)
from xarray.backends.file_manager import CachingFileManager, DummyFileManager
from xarray.backends.locks import HDF5_LOCK, combine_locks, ensure_lock, get_write_lock
from xarray.backends.netCDF4_ import (
BaseNetCDF4Array,
_build_and_get_enum,
_encode_nc4_variable,
_ensure_no_forward_slash_in_name,
_extract_nc4_variable_encoding,
_get_datatype,
_nc4_require_group,
)
from xarray.backends.store import StoreBackendEntrypoint
from xarray.core import indexing
from xarray.core.utils import (
FrozenDict,
emit_user_level_warning,
is_remote_uri,
read_magic_number_from_file,
try_read_magic_number_from_file_or_path,
)
from xarray.core.variable import Variable
if TYPE_CHECKING:
from xarray.backends.common import AbstractDataStore
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
from xarray.core.types import ReadBuffer
class H5NetCDFArrayWrapper(BaseNetCDF4Array):
def get_array(self, needs_lock=True):
ds = self.datastore._acquire(needs_lock)
return ds.variables[self.variable_name]
def __getitem__(self, key):
return indexing.explicit_indexing_adapter(
key, self.shape, indexing.IndexingSupport.OUTER_1VECTOR, self._getitem
)
def _getitem(self, key):
with self.datastore.lock:
array = self.get_array(needs_lock=False)
return array[key]
def _read_attributes(h5netcdf_var):
# GH451
# to ensure conventions decoding works properly on Python 3, decode all
# bytes attributes to strings
attrs = {}
for k, v in h5netcdf_var.attrs.items():
if k not in ["_FillValue", "missing_value"]:
if isinstance(v, bytes):
try:
v = v.decode("utf-8")
except UnicodeDecodeError:
emit_user_level_warning(
f"'utf-8' codec can't decode bytes for attribute "
f"{k!r} of h5netcdf object {h5netcdf_var.name!r}, "
f"returning bytes undecoded.",
UnicodeWarning,
)
attrs[k] = v
return attrs
_extract_h5nc_encoding = functools.partial(
_extract_nc4_variable_encoding,
lsd_okay=False,
h5py_okay=True,
backend="h5netcdf",
unlimited_dims=None,
)
def _h5netcdf_create_group(dataset, name):
return dataset.create_group(name)
class H5NetCDFStore(WritableCFDataStore):
"""Store for reading and writing data via h5netcdf"""
__slots__ = (
"_filename",
"_group",
"_manager",
"_mode",
"autoclose",
"format",
"is_remote",
"lock",
)
def __init__(self, manager, group=None, mode=None, lock=HDF5_LOCK, autoclose=False):
import h5netcdf
if isinstance(manager, h5netcdf.File | h5netcdf.Group):
if group is None:
root, group = find_root_and_group(manager)
else:
if type(manager) is not h5netcdf.File:
raise ValueError(
"must supply a h5netcdf.File if the group "
"argument is provided"
)
root = manager
manager = DummyFileManager(root)
self._manager = manager
self._group = group
self._mode = mode
self.format = None
# todo: utilizing find_root_and_group seems a bit clunky
# making filename available on h5netcdf.Group seems better
self._filename = find_root_and_group(self.ds)[0].filename
self.is_remote = is_remote_uri(self._filename)
self.lock = ensure_lock(lock)
self.autoclose = autoclose
@classmethod
def open(
cls,
filename,
mode="r",
format=None,
group=None,
lock=None,
autoclose=False,
invalid_netcdf=None,
phony_dims=None,
decode_vlen_strings=True,
driver=None,
driver_kwds=None,
storage_options: dict[str, Any] | None = None,
):
import h5netcdf
if isinstance(filename, str) and is_remote_uri(filename) and driver is None:
mode_ = "rb" if mode == "r" else mode
filename = _open_remote_file(
filename, mode=mode_, storage_options=storage_options
)
if isinstance(filename, bytes):
raise ValueError(
"can't open netCDF4/HDF5 as bytes "
"try passing a path or file-like object"
)
elif isinstance(filename, io.IOBase):
magic_number = read_magic_number_from_file(filename)
if not magic_number.startswith(b"\211HDF\r\n\032\n"):
raise ValueError(
f"{magic_number!r} is not the signature of a valid netCDF4 file"
)
if format not in [None, "NETCDF4"]:
raise ValueError("invalid format for h5netcdf backend")
kwargs = {
"invalid_netcdf": invalid_netcdf,
"decode_vlen_strings": decode_vlen_strings,
"driver": driver,
}
if driver_kwds is not None:
kwargs.update(driver_kwds)
if phony_dims is not None:
kwargs["phony_dims"] = phony_dims
if lock is None:
if mode == "r":
lock = HDF5_LOCK
else:
lock = combine_locks([HDF5_LOCK, get_write_lock(filename)])
manager = CachingFileManager(h5netcdf.File, filename, mode=mode, kwargs=kwargs)
return cls(manager, group=group, mode=mode, lock=lock, autoclose=autoclose)
def _acquire(self, needs_lock=True):
with self._manager.acquire_context(needs_lock) as root:
ds = _nc4_require_group(
root, self._group, self._mode, create_group=_h5netcdf_create_group
)
return ds
@property
def ds(self):
return self._acquire()
def open_store_variable(self, name, var):
import h5netcdf
import h5py
dimensions = var.dimensions
data = indexing.LazilyIndexedArray(H5NetCDFArrayWrapper(name, self))
attrs = _read_attributes(var)
# netCDF4 specific encoding
encoding = {
"chunksizes": var.chunks,
"fletcher32": var.fletcher32,
"shuffle": var.shuffle,
}
if var.chunks:
encoding["preferred_chunks"] = dict(
zip(var.dimensions, var.chunks, strict=True)
)
# Convert h5py-style compression options to NetCDF4-Python
# style, if possible
if var.compression == "gzip":
encoding["zlib"] = True
encoding["complevel"] = var.compression_opts
elif var.compression is not None:
encoding["compression"] = var.compression
encoding["compression_opts"] = var.compression_opts
# save source so __repr__ can detect if it's local or not
encoding["source"] = self._filename
encoding["original_shape"] = data.shape
vlen_dtype = h5py.check_dtype(vlen=var.dtype)
if vlen_dtype is str:
encoding["dtype"] = str
elif vlen_dtype is not None: # pragma: no cover
# xarray doesn't support writing arbitrary vlen dtypes yet.
pass
# just check if datatype is available and create dtype
# this check can be removed if h5netcdf >= 1.4.0 for any environment
elif (datatype := getattr(var, "datatype", None)) and isinstance(
datatype, h5netcdf.core.EnumType
):
encoding["dtype"] = np.dtype(
data.dtype,
metadata={
"enum": datatype.enum_dict,
"enum_name": datatype.name,
},
)
else:
encoding["dtype"] = var.dtype
return Variable(dimensions, data, attrs, encoding)
def get_variables(self):
return FrozenDict(
(k, self.open_store_variable(k, v)) for k, v in self.ds.variables.items()
)
def get_attrs(self):
return FrozenDict(_read_attributes(self.ds))
def get_dimensions(self):
return FrozenDict((k, len(v)) for k, v in self.ds.dimensions.items())
def get_encoding(self):
return {
"unlimited_dims": {
k for k, v in self.ds.dimensions.items() if v.isunlimited()
}
}
def set_dimension(self, name, length, is_unlimited=False):
_ensure_no_forward_slash_in_name(name)
if is_unlimited:
self.ds.dimensions[name] = None
self.ds.resize_dimension(name, length)
else:
self.ds.dimensions[name] = length
def set_attribute(self, key, value):
self.ds.attrs[key] = value
def encode_variable(self, variable):
return _encode_nc4_variable(variable)
def prepare_variable(
self, name, variable, check_encoding=False, unlimited_dims=None
):
import h5py
_ensure_no_forward_slash_in_name(name)
attrs = variable.attrs.copy()
dtype = _get_datatype(variable, raise_on_invalid_encoding=check_encoding)
fillvalue = attrs.pop("_FillValue", None)
if dtype is str:
dtype = h5py.special_dtype(vlen=str)
# check enum metadata and use h5netcdf.core.EnumType
if (
hasattr(self.ds, "enumtypes")
and (meta := np.dtype(dtype).metadata)
and (e_name := meta.get("enum_name"))
and (e_dict := meta.get("enum"))
):
dtype = _build_and_get_enum(self, name, dtype, e_name, e_dict)
encoding = _extract_h5nc_encoding(variable, raise_on_invalid=check_encoding)
kwargs = {}
# Convert from NetCDF4-Python style compression settings to h5py style
# If both styles are used together, h5py takes precedence
# If set_encoding=True, raise ValueError in case of mismatch
if encoding.pop("zlib", False):
if check_encoding and encoding.get("compression") not in (None, "gzip"):
raise ValueError("'zlib' and 'compression' encodings mismatch")
encoding.setdefault("compression", "gzip")
if (
check_encoding
and "complevel" in encoding
and "compression_opts" in encoding
and encoding["complevel"] != encoding["compression_opts"]
):
raise ValueError("'complevel' and 'compression_opts' encodings mismatch")
complevel = encoding.pop("complevel", 0)
if complevel != 0:
encoding.setdefault("compression_opts", complevel)
encoding["chunks"] = encoding.pop("chunksizes", None)
# Do not apply compression, filters or chunking to scalars.
if variable.shape:
for key in [
"compression",
"compression_opts",
"shuffle",
"chunks",
"fletcher32",
]:
if key in encoding:
kwargs[key] = encoding[key]
if name not in self.ds:
nc4_var = self.ds.create_variable(
name,
dtype=dtype,
dimensions=variable.dims,
fillvalue=fillvalue,
**kwargs,
)
else:
nc4_var = self.ds[name]
for k, v in attrs.items():
nc4_var.attrs[k] = v
target = H5NetCDFArrayWrapper(name, self)
return target, variable.data
def sync(self):
self.ds.sync()
def close(self, **kwargs):
self._manager.close(**kwargs)
class H5netcdfBackendEntrypoint(BackendEntrypoint):
"""
Backend for netCDF files based on the h5netcdf package.
It can open ".nc", ".nc4", ".cdf" files but will only be
selected as the default if the "netcdf4" engine is not available.
Additionally it can open valid HDF5 files, see
https://h5netcdf.org/#invalid-netcdf-files for more info.
It will not be detected as valid backend for such files, so make
sure to specify ``engine="h5netcdf"`` in ``open_dataset``.
For more information about the underlying library, visit:
https://h5netcdf.org
See Also
--------
backends.H5NetCDFStore
backends.NetCDF4BackendEntrypoint
backends.ScipyBackendEntrypoint
"""
description = (
"Open netCDF (.nc, .nc4 and .cdf) and most HDF5 files using h5netcdf in Xarray"
)
url = "https://docs.xarray.dev/en/stable/generated/xarray.backends.H5netcdfBackendEntrypoint.html"
def guess_can_open(
self,
filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
) -> bool:
magic_number = try_read_magic_number_from_file_or_path(filename_or_obj)
if magic_number is not None:
return magic_number.startswith(b"\211HDF\r\n\032\n")
if isinstance(filename_or_obj, str | os.PathLike):
_, ext = os.path.splitext(filename_or_obj)
return ext in {".nc", ".nc4", ".cdf"}
return False
def open_dataset(
self,
filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
format=None,
group=None,
lock=None,
invalid_netcdf=None,
phony_dims=None,
decode_vlen_strings=True,
driver=None,
driver_kwds=None,
storage_options: dict[str, Any] | None = None,
) -> Dataset:
filename_or_obj = _normalize_path(filename_or_obj)
store = H5NetCDFStore.open(
filename_or_obj,
format=format,
group=group,
lock=lock,
invalid_netcdf=invalid_netcdf,
phony_dims=phony_dims,
decode_vlen_strings=decode_vlen_strings,
driver=driver,
driver_kwds=driver_kwds,
storage_options=storage_options,
)
store_entrypoint = StoreBackendEntrypoint()
ds = store_entrypoint.open_dataset(
store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
return ds
def open_datatree(
self,
filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
format=None,
group: str | None = None,
lock=None,
invalid_netcdf=None,
phony_dims=None,
decode_vlen_strings=True,
driver=None,
driver_kwds=None,
**kwargs,
) -> DataTree:
groups_dict = self.open_groups_as_dict(
filename_or_obj,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
format=format,
group=group,
lock=lock,
invalid_netcdf=invalid_netcdf,
phony_dims=phony_dims,
decode_vlen_strings=decode_vlen_strings,
driver=driver,
driver_kwds=driver_kwds,
**kwargs,
)
return datatree_from_dict_with_io_cleanup(groups_dict)
def open_groups_as_dict(
self,
filename_or_obj: str | os.PathLike[Any] | ReadBuffer | AbstractDataStore,
*,
mask_and_scale=True,
decode_times=True,
concat_characters=True,
decode_coords=True,
drop_variables: str | Iterable[str] | None = None,
use_cftime=None,
decode_timedelta=None,
format=None,
group: str | None = None,
lock=None,
invalid_netcdf=None,
phony_dims=None,
decode_vlen_strings=True,
driver=None,
driver_kwds=None,
**kwargs,
) -> dict[str, Dataset]:
from xarray.backends.common import _iter_nc_groups
from xarray.core.treenode import NodePath
from xarray.core.utils import close_on_error
filename_or_obj = _normalize_path(filename_or_obj)
store = H5NetCDFStore.open(
filename_or_obj,
format=format,
group=group,
lock=lock,
invalid_netcdf=invalid_netcdf,
phony_dims=phony_dims,
decode_vlen_strings=decode_vlen_strings,
driver=driver,
driver_kwds=driver_kwds,
)
# Check for a group and make it a parent if it exists
if group:
parent = NodePath("/") / NodePath(group)
else:
parent = NodePath("/")
manager = store._manager
groups_dict = {}
for path_group in _iter_nc_groups(store.ds, parent=parent):
group_store = H5NetCDFStore(manager, group=path_group, **kwargs)
store_entrypoint = StoreBackendEntrypoint()
with close_on_error(group_store):
group_ds = store_entrypoint.open_dataset(
group_store,
mask_and_scale=mask_and_scale,
decode_times=decode_times,
concat_characters=concat_characters,
decode_coords=decode_coords,
drop_variables=drop_variables,
use_cftime=use_cftime,
decode_timedelta=decode_timedelta,
)
if group:
group_name = str(NodePath(path_group).relative_to(parent))
else:
group_name = str(NodePath(path_group))
groups_dict[group_name] = group_ds
return groups_dict
BACKEND_ENTRYPOINTS["h5netcdf"] = ("h5netcdf", H5netcdfBackendEntrypoint)