CCR/.venv/lib/python3.12/site-packages/xarray/namedarray/pycompat.py

139 lines
4.7 KiB
Python

from __future__ import annotations
from importlib import import_module
from types import ModuleType
from typing import TYPE_CHECKING, Any, Literal
import numpy as np
from packaging.version import Version
from xarray.core.utils import is_scalar
from xarray.namedarray.utils import is_duck_array, is_duck_dask_array
integer_types = (int, np.integer)
if TYPE_CHECKING:
ModType = Literal["dask", "pint", "cupy", "sparse", "cubed", "numbagg"]
DuckArrayTypes = tuple[type[Any], ...] # TODO: improve this? maybe Generic
from xarray.namedarray._typing import _DType, _ShapeType, duckarray
class DuckArrayModule:
"""
Solely for internal isinstance and version checks.
Motivated by having to only import pint when required (as pint currently imports xarray)
https://github.com/pydata/xarray/pull/5561#discussion_r664815718
"""
module: ModuleType | None
version: Version
type: DuckArrayTypes
available: bool
def __init__(self, mod: ModType) -> None:
duck_array_module: ModuleType | None
duck_array_version: Version
duck_array_type: DuckArrayTypes
try:
duck_array_module = import_module(mod)
duck_array_version = Version(duck_array_module.__version__)
if mod == "dask":
duck_array_type = (import_module("dask.array").Array,)
elif mod == "pint":
duck_array_type = (duck_array_module.Quantity,)
elif mod == "cupy":
duck_array_type = (duck_array_module.ndarray,)
elif mod == "sparse":
duck_array_type = (duck_array_module.SparseArray,)
elif mod == "cubed":
duck_array_type = (duck_array_module.Array,)
# Not a duck array module, but using this system regardless, to get lazy imports
elif mod == "numbagg":
duck_array_type = ()
else:
raise NotImplementedError
except (ImportError, AttributeError): # pragma: no cover
duck_array_module = None
duck_array_version = Version("0.0.0")
duck_array_type = ()
self.module = duck_array_module
self.version = duck_array_version
self.type = duck_array_type
self.available = duck_array_module is not None
_cached_duck_array_modules: dict[ModType, DuckArrayModule] = {}
def _get_cached_duck_array_module(mod: ModType) -> DuckArrayModule:
if mod not in _cached_duck_array_modules:
duckmod = DuckArrayModule(mod)
_cached_duck_array_modules[mod] = duckmod
return duckmod
else:
return _cached_duck_array_modules[mod]
def array_type(mod: ModType) -> DuckArrayTypes:
"""Quick wrapper to get the array class of the module."""
return _get_cached_duck_array_module(mod).type
def mod_version(mod: ModType) -> Version:
"""Quick wrapper to get the version of the module."""
return _get_cached_duck_array_module(mod).version
def is_chunked_array(x: duckarray[Any, Any]) -> bool:
return is_duck_dask_array(x) or (is_duck_array(x) and hasattr(x, "chunks"))
def is_0d_dask_array(x: duckarray[Any, Any]) -> bool:
return is_duck_dask_array(x) and is_scalar(x)
def to_numpy(
data: duckarray[Any, Any], **kwargs: dict[str, Any]
) -> np.ndarray[Any, np.dtype[Any]]:
from xarray.core.indexing import ExplicitlyIndexed
from xarray.namedarray.parallelcompat import get_chunked_array_type
if isinstance(data, ExplicitlyIndexed):
data = data.get_duck_array() # type: ignore[no-untyped-call]
# TODO first attempt to call .to_numpy() once some libraries implement it
if is_chunked_array(data):
chunkmanager = get_chunked_array_type(data)
data, *_ = chunkmanager.compute(data, **kwargs)
if isinstance(data, array_type("cupy")):
data = data.get()
# pint has to be imported dynamically as pint imports xarray
if isinstance(data, array_type("pint")):
data = data.magnitude
if isinstance(data, array_type("sparse")):
data = data.todense()
data = np.asarray(data)
return data
def to_duck_array(data: Any, **kwargs: dict[str, Any]) -> duckarray[_ShapeType, _DType]:
from xarray.core.indexing import ExplicitlyIndexed
from xarray.namedarray.parallelcompat import get_chunked_array_type
if is_chunked_array(data):
chunkmanager = get_chunked_array_type(data)
loaded_data, *_ = chunkmanager.compute(data, **kwargs) # type: ignore[var-annotated]
return loaded_data
if isinstance(data, ExplicitlyIndexed):
return data.get_duck_array() # type: ignore[no-untyped-call, no-any-return]
elif is_duck_array(data):
return data
else:
return np.asarray(data) # type: ignore[return-value]